Estabilidad del estado pasivo del acero en morteros de ceniza volante activada

Autores/as

  • A. Fernández-Jiménez Instituto de Ciencias de la Construcción Eduardo Torroja (IETCC), CSIC. Madrid
  • J. M. Miranda Instituto de Metalurgia, Universidad Autónoma de San Luis de Potosí
  • J. A. González Centro Nacional de Investigaciones Metalúrgicas (CENIM), CSIC. Madrid
  • A. Palomo Instituto de Ciencias de la Construcción Eduardo Torroja (IETCC), CSIC. Madrid

DOI:

https://doi.org/10.3989/mc.2010.53909

Palabras clave:

corrosión, cenizas volantes, activación alcalina, morteros, resistencias mecánicas

Resumen


En el presente trabajo se estudia el comportamiento del acero estructural embebido en morteros de cemento Pórtland (OPC) y de cenizas volantes activadas con NaOH y una mezcla de NaOH y waterglass, en ausencia y en presencia de un 2% de Cl- (CaCl2). Se determino la evolución del potencial de corrosión (Ecorr), la resistencia de polarización lineal (Rp) y la intensidad de corrosión (icorr), variando las condiciones ambientales (90 días al 95% de humedad relativa (HR)-30 días a ≈ 30% HR- 760 días a ≈ 95% HR). En ausencia de Cl- los morteros de cenizas volantes activadas pueden pasivar los refuerzos de acero, si bien la estabilidad del estado pasivo ante cambios en las condiciones ambientales parece mostrar una fuerte dependencia de la solución activadora empleada. En presencia de un 2% de Cl- los aceros se corroen mostrando en comportamiento similar al observado en morteros en base OPC.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

(1) Bouzoubaâ N., Zhang M.H., Malhotra V.M, and Golden D.M., “Blended fly ash cement- A review”, ACI Materials Journal, Vol. 96, nº 6, (1999), pp. 641-650.

(2) Lukasik J., Damtoft J.S., Herfort D., Sorrentino D., Gartner E.M., “Sustainable Development and Climate Change Initiatives”. 12th Inter. Cong. On the Chemistry of Cement, Montreal, Canada, 8-13 July 2007 (MPL-1)

(3) Fernandez A., Palomo A., López-Hombrados C., “Some engineering properties of alkali activated fly ash concrete”, ACI Materials Journal, Vol. 103, nº 2, (2006), pp.106-112.

(4) Chatterjee A.K., “High belite cements – present status and future technological options”, Cem. Concr. Res., Vol. 26, nº 8, (1996), pp.1213-1225. doi:10.1016/0008-8846(96)00099-3

(5) Scrivener K.L., Cabiron J.L., Letourneaux R., “High performance concrete based on Calcium Aluminate Cements”, Cem. Concr. Res Vol. 29, (1999), pp.1215-1223. doi:10.1016/S0008-8846(99)00103-9

(6) Sharp J.H., Lawrence C.D., Yang R., “Calcium sulfoaluminate cement – Low energy cements”, Ad. Cem. Res. Vol. 11, (1999), pp.3-14

(7) Roy D.M., “Alkali-activated cements Opportunities and challenges”, Cem. Concr. Res. Vol. 29, (1999),pp.249-254.doi:10.1016/S0008-8846(98)00093-3 doi:10.1016/S0008-8846(98)00093-3

(8) Palomo A., Fernández-Jiménez A., Kovalchuk G., Ordoñez L.M., and Naranjo M.C. “OPC-Fly Ash Cementitious System: Study Of The Gel Binders Produced During Alkaline Hydration” J. Materials Science Vol. 42, (2007), pp.2958-2966. doi:10.1007/s10853-006-0585-7

(9) García Lodeiro I., Fernández-Jiménez, A. Palomo A. and Macphee D.E “Effect of calcium on N-A-S-H cementitious gels”, J. Am. Ceramic. Society, (2010).

(10) Palomo A., Grutzeck M. W., Blanco M.T., “Alkali-activated fly ashes. A cement for the future”, Cem. Concr. Res., Vol. 29, (1999), pp.1323-1329. doi:10.1016/S0008-8846(98)00243-9

(11) Duxson P., Fernández-Jiménez A., Provis J.L., Lukey G.C., Palomo A. van Deventer J.S.J., “Geopolymer technology: The current state of the art”, J. Materials Science, Vol 42, (2007), pp.2917-2933. doi:10.1007/s10853-006-0637-z

(12) Fernández-Jiménez A., García-Lodeiro I., Palomo A., “Durability of alkaliactivated fly ash cementitious materials”, J. Materials Science Vol. 42, (2007), pp.3055-3065. doi:10.1007/s10853-006-0584-8

(13) Naik T.R., Singh S.S., Hussain M.W. ”Permeability of concrete containing large amounts of fly ash” Cem Concr. Res. Vol. 24, (1994), pp. 913-922 doi:10.1016/0008-8846(94)90011-6

(14) Thomas M., "Chloride thresholds in marine concrete" Cement Concr. Res, Vol. 26, nº 4, (1996), pp.513-519. doi:10.1016/0008-8846(96)00035-X

(15) Muralidharan S., Saraswathy V., Thangavel K., Srinivasan S., “Competitive role of inhibitive and aggressive ions in the corrosion of steel in concrete” J. Appl. Electrochem. Vol. 30, (2000), pp.1255-1259. doi:10.1023/A:1026570120698

(16) Mangat P.S., Molloy B.T. “Influence of PFA, slag and micro silica on chloride induced corrosion of reinforcement in concrete. Cem Concr. Res. Vol. 21, (1991), pp. 819-834. doi:10.1016/0008-8846(91)90177-J

(17) Saraswathy V., Song H.W. “Electrochemical Studies on the corrosion performance of steel embedded in activated fly ash blended concrete” Electrochemical Acta, Vol. 51, (2006), pp.4601-4611. doi:10.1016/j.electacta.2006.01.005

(18) Bastidas D.M., Fernández-Jiménez A., Palomo A., Gonzalez J.A., “A study on the passive state stability of steel embedded in activated fly ash mortars”, Corrosion Science, Vol. 50, nº 4, (2008), pp.1058-1065. doi:10.1016/j.corsci.2007.11.016

(19) Miranda J.M., Fernández-Jiménez A., González J.A. Palomo A., “Corrosion resistance in activated fly-ash mortars”, Cem. Concr. Res., Vol. 35, (2005), pp.1210-1217. doi:10.1016/j.cemconres.2004.07.030

(20) “Corrosion of Reinforcement in Concrete”, Eds. C.L. Page, K.W.J. Treadaway, P.B. Bamforth, Society of Chemical Industry, published by Elsevier Applied Science, London, 1990.

(21) Slater J.E., “Corrosion of Metals in Association with Concrete”, ASTM STP 818. Philadelphia, PA 1983.

(22) UNE-EN- 196-1:2005 “Métodos de ensayo ce cementos. Parte 1: Determinación de las resistencias mecánicas”.

(23) ASTM C876-09 “Standard Test Mehod for Half-cell Potentials of uncoated reinforcing steel in concrete”.

(24) Stern M. Geary A.L., “Electrochemical polarization I. A theoretical analysis of the shape of polarization curves”, J. Electrochem. Soc., Vol. 104, (1957), pp.56-63. doi:10.1149/1.2428496

(25) Fernández-Jiménez A., Palomo A., “Factors affecting early compressive strength of alkali activated fly ash (OPC-free) concrete”, Mater. Construc., Vol, 57, nº 287, (2007), pp. 5-20.

(26) Fernández-Jiménez A., Palomo A., “Composition and Microstructure of alkali activated fly ash mortars. Effect of the activator”, Cem. Concr. Res., Vol.35, (2005), pp.1984-1992. doi:10.1016/j.cemconres.2005.03.003

(27) Criado M., Fernández-Jiménez A., Palomo A., Sobrados I. and Sanz J. “Effect of the SiO2/Na2O ratio on the alkali-activation of fly ash. Part II: 29Si MAS-NMR survey” Microporous and Mesoporous Materials Vol. 109, (2008), pp.525-534. doi:10.1016/j.micromeso.2007.05.062

(28) Durar Network, Manual de Inspección, Evaluación y diagnostico de corrosión en estructuras de hormigón armado, CYTED programe, Río de Janeiro, 1997.

(29) Andrade C., Alonso M.C., Gonzalez J.A. “An initial effort to use the corrosion rate measurements for estimation rebar durability, in: N.S. Berke, V. Chaker, D. Whiting (EDs). Corrosion rates of steel in concrete ASTM STP 1065, American Society for Testing and materials, Philadelphia, (1990), pp.29-37.

(30) Aperador W. Mejia de Gutiérrez R., Bastidas D.M. “Steel corrosion behaviour in carbonated álcali-activated slag concrete” Corrosion Science Vol. 51, (2009), pp.2027-2033. doi:10.1016/j.corsci.2009.05.033

(31) González J.A., Andrade C., “Effect of carbonation, chlorides and relative ambient humidity on the corrosion of galvanized rebars embedded in concrete”, Br. Corros J., Vol. 17, nº1, (1982), pp. 21-28.

(32) Alonso C., Andrade C., González J.A., “Relation between resistivity and corrosion rate of reinforcements in carbonated mortar made with several cements types”, Cem. Concr. Research, Vol. 8, (1988), pp. 687-698. doi:10.1016/0008-8846(88)90091-9

(33) González J.A., Miranda J.M., Birbilis N., Feliu S., Electrochemical techniques for studying corrosion of reinforcement steel: Limitations and advantages, Corrosion, Vol. 61 (2005), pp.3750.

(34) Andrade C., González J.A., “Quantitative measurements of corrosion rate of reinforcing steels embedded in concrete using polarization resistance mesurements”, Werk. Korros., Vol. 29, (1978), pp. 515-519. doi:10.1002/maco.19780290804

(35) Criado M., Fernández-Jimenez A., Palomo A., “Alkali activation of fly ashes. Part 1: Effect of curing conditions on the carbonation of the reaction products”, FUEL, Vol. 84, (2005), pp. 2048-2054. doi:10.1016/j.fuel.2005.03.030

(36) Kovalchuk G., Fernández-Jiménez A., Palomo A., “Alkali activated fly ashes. Relationships between mechanical strength gains and initial ash chemistry”, Mater. Construc., Vol 58, nº 291, (2008), pp. 35-52.

Descargas

Publicado

2010-12-30

Cómo citar

Fernández-Jiménez, A., Miranda, J. M., González, J. A., & Palomo, A. (2010). Estabilidad del estado pasivo del acero en morteros de ceniza volante activada. Materiales De Construcción, 60(300), 51–65. https://doi.org/10.3989/mc.2010.53909

Número

Sección

Artículos

Artículos más leídos del mismo autor/a

<< < 1 2 3