Producción de hormigones más durables y sostenibles utilizando escoria volcánica como sustitutivo de cemento

Autores/as

DOI:

https://doi.org/10.3989/mc.2017.00716

Palabras clave:

Puzolana, Cementos con adiciones, Propiedades mecánicas, Durabilidad, MEB

Resumen


El objetivo del estudio fue investigar la resistencia y durabilidad de cementos basados en escoria volcánica. El desarrollo de resistencias a flexión y compresión, se estudió en morteros y hormigones con escoria volcánica en porcentajes de reemplazo desde 10 al 35%. Se realizaron ensayos de permeabilidad al agua, penetración de cloruros y porosidad de los hormigones a las edades de 2, 7, 28, 90 y 180 días. Los resultados revelaron que la escoria volcánica podría ser adecuada para la fabricación de cementos con adiciones. La resistencia de morteros/hormigones que contiene escoria volcánica fue menor que la de los correspondientes morteros u hormigones sin adición a todas las edades. Sin embargo, a los 90 días de curado, las resistencias de los morteros/hormigones con escoria fueron comparables con las del cemento sin adición. La permeabilidad al agua, penetrabilidad de cloruros y porosidad de los hormigones con escoria fueron mucho más bajos que los del correspondiente hormigón sin escoria. Los resultados se analizaron estadísticamente y las ecuaciones de estimación se han desarrollado para predecir las propiedades estudiadas. También se empleó el análisis SEM/EDX.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ramezanianpour A.A. (2014) Cement replacement materials: Properties, durability, sustainability. Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-642-36721-2

Aitcin, P.C.; Mindess, S. (2011) Sustainability of concrete. Spon Press.

Hooton, RD.; Bickley, JA. (2014) Design for durability: The key to improving concrete sustainability. Constr. Build. Mater. 67, 422–430. https://doi.org/10.1016/j.conbuildmat.2013.12.016

Owaid, H.M.; Hamid, R.B.; Taha, M.R. (2012) A review of sustainable supplementary cementitious materials as an alternative to all-Portland cement mortar and concrete. Aust. J. Basic Appl. Sci. 6 [9], 2887–2303.

Al-Chaar, G.K.; Al-Kadi, M.; Asteris, P.G. (2013) Natural pozzolan as a partial substitute for cement in concrete. The Open Constr. Technol. J. 7, 33–42.

Senhadji, Y.; Escadeillas, G.; Khelafi, H.; Mouli, M.; Benosman, A.S. (2012) Evaluation of natural pozzolan for use as supplementary cementitious material. Eu. J. Environ. Civ. Eng. 16 [1], 77–96. https://doi.org/10.1080/19648189.2012.667692

Hossain, K.M.A. (2009) Resistance of scoria-based blended cement concrete against deterioration and corrosion in mixed sulfate environment. ASCE J. Mater. Civ. Eng. 21 [7], 299–308. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:7(299)

Ghrici, M.; Kenai, S.; Meziane E. (2006) Mechanical and durability properties of cement mortar with Algerian natural Pozzolana. J. Mater. Sci. 41, 6965–6972. https://doi.org/10.1007/s10853-006-0227-0

Cavdar, A.; Yetgin, S. (2007) Availability of tuffs from northeast of Turkey as natural pozzolans on cement, some chemical and mechanical relationships. Constr. Build. Mater. 21, 2066–2071. https://doi.org/10.1016/j.conbuildmat.2006.05.034

Turanli, L.; Uzal, B.; Bektas, F. (2005) Effect of large amounts of natural pozzolan addition on properties of blended cements. Cem. Concr. Res. 35 [6], 1106–1111. https://doi.org/10.1016/j.cemconres.2004.07.022

Rodriguez-Camacho, R.E.; Uribe-Afif, R. (2002) Importance of using natural pozzolans on concrete durability. Cem. Concr. Res. 32, 1851–1858. https://doi.org/10.1016/S0008-8846(01)00714-1

Khan, M.I.; Alhozaimy, A.M. (2011) Properties of natural pozzolan and its potential utilization in environmental friendly concrete. Can. J. Civ. Eng. 38, 71–78. https://doi.org/10.1139/L10-112

Massazza, F. (2008) Structure and performance of cements. edited by Benested J., and Barnes, second edition. Taylor & Francis. 2008.

The General Establishment of Geology and Mineral Resources in Syria (GEGMR) (2011) A Guide for mineral resources in Syria. (in Arabic).

The General Establishment of Geology and Mineral Resources in Syria (GEGMR) (2007) Official document nr. (3207/T/9) dated 21.11.2007. (in Arabic).

The General Organization for Cement and Building Materials (GOCBM) http://cemsyria.com.sy. Accessed in 2011 (in Arabic).

Binici, H.; Aksogan, O.; Cagatay, JH.; Tokyay, M.; Ensen, E. (2007) The effect of particle size distribution on the properties of blended cement. Powder Technol. 177, 140–147. https://doi.org/10.1016/j.powtec.2007.03.033

Yetgin, S.; Cavdar, A. (2006) A study of effects of natural pozzolan on properties of cement mortars. ASCE J. Mater. Civ. Eng. 18 [6], 813–816. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:6(813)

Pourkhorshidi, A.R.; Najimi, M.; Parhizkar, T.; Jafarpour, F.; Hillemeier, B. (2010) Applicability of the standard specification of ASTM C618 for evaluation of natural pozzolans. Cem. Concr. Comp. 32, 794–800. https://doi.org/10.1016/j.cemconcomp.2010.08.007

Adesanya, D.A.; Raheem, A.A. (2009) Development of corn cob ash blended cement. Constr. Build. Mater. 23 [1], 347–352. https://doi.org/10.1016/j.conbuildmat.2007.11.013

Colak, A. (2003) Characteristics of pastes from a Portland cement containing different amounts of natural pozzolan. Cem. Concr. Res. 33, 585–593. https://doi.org/10.1016/S0008-8846(02)01027-X

Neville, A.M. (2011) Properties of concrete. Fifth edition, Pearson Education.

Hossain, K.M.A. (2003) Blended cement using volcanic ash and pumice. Cem. Concr. Res. 33, 1601–1605. 2003. https://doi.org/10.1016/s0008-8846(03)00127-3

Mehta, P.K. and Monteiro, PJM. (2006) Concrete: Microstructure, properties, and Materials. 3rd edition. McGraw-Hill.

Montgomery D.C. and Peck E.A. (1982) Introduction to linear regression analysis. New York: Wiley.

Oluokun, F.A; Burdette, E.G.; Deatherage, J.H. (1991) Splitting tensile strength and compressive strength relationships at early ages. ACI Mater. J. 88 [2], 115–121.

JCI. (2011) Guidelines for control of cracking of mass concrete 2008. Japan Concrete Institute.

AIJ. (2008) Recommendations for practice of thermal cracking control of massive concrete in building. Architectural Institute of Japan.

Talbot, C.; Pigeon, M.; Maarchand, M.; Hornain, J. (1995). Properties of mortar mixtures containing high amounts of various supplementary cemetitious materials. In: Proceedings of the fifth international conference on the use of fly ash, silica fume, slag, and natural pozzolana in concrete, edited by Malhotra, VM., ACI SP 153, 125–152.

Rukzon, S.; Chindaprairt, P. (2009) Effect of grinding on chemical and physical properties of rice husk ash. Int. J. Miner Metal Mater. 16 [2], 242–247. http://dx.doi.org/10.1016/S1674-4799(09)60041-8. https://doi.org/10.1016/S1674-4799(09)60041-8

Chinaprasirt, P.; Chotithanorm, C.; Cao, H.; Sirivivatnanon, V. (2007) Influence of fly ash fineness on the chloride penetration of concrete. Constr. Build. Mater. 21, 356–361. http://dx.doi.org/10.1016/j.conbuildmat.2005.08.010. https://doi.org/10.1016/j.conbuildmat.2005.08.010

Gastaldini, A.; Isaia, G.; Gomes, J.; Sperb, J. (2007) Chloride penetration and carbonation in concrete with rice husk ash and chemical activation. Cem. Concr. Comp. 29 [3], 176–180. https://doi.org/10.1016/j.cemconcomp.2006.11.010.

Mindess, S.; Young, J.; Darwin, D. (2003) Concrete. 2nd edition, Prentice Hall.

Publicado

2017-06-30

Cómo citar

al-Swaidani, A. M. (2017). Producción de hormigones más durables y sostenibles utilizando escoria volcánica como sustitutivo de cemento. Materiales De Construcción, 67(326), e118. https://doi.org/10.3989/mc.2017.00716

Número

Sección

Artículos