Impacto de la utilización de eco-ladrillos, como envolventes para viviendas unifamiliares de una planta, en zonas de alta sismicidad
DOI:
https://doi.org/10.3989/mc.2017.03316Palabras clave:
Ladrillo, Aditivo orgánico, Propiedades mecánicas, Terremoto, Modelización, Análisis de elementos finitosResumen
Los ladrillos de arcilla cocida, fabricados con ciertos residuos, a fin de aligerarlos, es una alternativa ampliamente desarrollada. A pesar de que han dado resultados positivos, la mayor parte han mostrado una importante reducción de la resistencia mecánica. Este problema, es especialmente relevante cuando se considera su uso en zonas sísmicas. Sin embargo, a pesar de que la resistencia a la compresión disminuye, en algunos casos, la energía que puede absorber aumenta. De este modo, el artículo ensaya y muestra las propiedades físicas y mecánicas de la arcilla cocida, fabricada añadiendo serrín de madera. Los resultados obtenidos han servido para calcular la respuesta ante un sismo de intensidad media para un modelo de edificio de una planta. Se ha concluido que el uso de ladrillos fabricados con hasta el 5% de serrín, es una alternativa válida para el reciclaje de residuo agrícola y su comportamiento mecánico ante sismos es satisfactorio.
Descargas
Citas
Raji, B.; Tenpierik, M.J.; Van Den Dobbelsteen, A. (2015) The impact of greening systems on building energy performance: A literature review. Renew. Sust. Energ. Rev., 45, 610-623. https://doi.org/10.1016/j.rser.2015.02.011
Muñoz V.P.; Morales, M.P.; Mendívil, M.A.; Muñoz, V.L. (2014) Fired clay bricks manufactured by adding wastes as sustainable construction material: A review. Construcc. Build. Mat., 63 97-107. https://doi.org/10.1016/j.conbuildmat.2014.03.045
Raut, S.P.; Ralegaonkar, R.V.; Mandavgane, S.A. (2011) Development of sustainable construction material using industrial and agricultural solid waste: A review of wastecreate bricks. Construcc. Build. Mat., 25, 4037-4042. https://doi.org/10.1016/j.conbuildmat.2011.04.038
Bories, C.; Borredon, M.; Vedrenne, E.; Vilarem, G. (2014) Development of eco-friendly porous fired clay bricks using pore-forming agents: A review. J. Environ. Manage., 143, 186-196. https://doi.org/10.1016/j.jenvman.2014.05.006
Cuadra, C.; Tokeshi, K.; Karkee, M.B.; Sakaida, Y. (2007) Earthquake resistance of a historical brick building in Akita Prefecture, Japan. Wit Trans. Built. Env., 95, 699-707. https://doi.org/10.2495/STR070651
L_ik, I.; Uz, V. (2013) Turkey's clay brick and tile industry - History, present and future, Ziegelindustr. Int., 9, 22-29.
Haack, B.N.; Khatiwada, G. (2007) Rice and Bricks: Environmental Issues and Mapping of the Unusual Crop Rotation Pattern in the Kathmandu Valley, Nepal. Environ. Manage., 39(6), 774-782. https://doi.org/10.1007/s00267-006-0167-0 PMid:17453278
Lavado, L.; Taira, J.; Gallardo, J. (2014) Current state of masonry properties material on emerging zones in Lima city. J. Disaster Res., 9(6), 1015-1020. https://doi.org/10.20965/jdr.2014.p1015
INE (2015). Website of the Instituto Nacional de Estadística de Chile. (Spanish). Available at: http://ine.cl (July 2015).
CChC (2011). Website of the Cámara Chilena de la Construcción. Anuario de la construcción 2011 (Spanish). Available at: http://www.cchc.cl (July 2015).
López-Almansa, F.; Domínguez, D.; Benavent-Climent, A. (2013). Seismic performance of RC buildings with wide beams. Eng. Struct., 42(1), 687-702. https://doi.org/10.1016/j.engstruct.2012.08.033
Domínguez, D.; López-Almansa, F.; Benavent-Climent, A. (2014) Comportamiento, para el terremoto de Lorca de 11-05-2011, de edificios de vigas planas proyectados sin tener en cuenta la acción sísmica, Inf. Constr., 66(533) (spanish).
Phonphuak N.; Chindaprasirt, P. (2015) Types of waste, properties, and durability of pore-forming wastebased fired masonry bricks, In Eco-Efficient Masonry Bricks and Blocks, Chapter 6, Woodhead Publishing, Oxford, 2015, pp. 103-127. https://doi.org/10.1016/B978-1-78242-305-8.00006-1
Mostafaei H.; Kabeyasawa T. (2004) Effect of Infill Masonry Walls on the Seismic Response of Reinforced Concrete Buildings. Bull. Earthquake Res. Ins., 79, 133-156.
Seismosoft® "SeismoStruct v7.0.2 - A computer program for static and dynamic nonlinear analysis of framed structures," available from http://www.seismosoft.com, (July 2015).
EN 1998 (Eurocode 8). Disposición para el Proyecto de estructuras sismorresistentes. (2005).
EN 772-13:2000. Methods of test for masonry units - Part 13: Determination of net and gross dry density of masonry units (except for natural stone).
EN 772-3:1998. Methods of test for masonry units - part 3: Determination of net volume and percentage of voids of clay masonry units by hydrostatic weighing.
Velasco, P.M.; Ortiz, M.P.M.; Giró, M.A.M.; Melia, D.M.; Rehbein, J.H. (2015). Development of sustainable fired clay bricks by adding kindling from vine shoot: Study of thermal and mechanical properties. Appl. Clay Sci.,107 156-164 https://doi.org/10.1016/j.clay.2015.01.017
Huang, S.; Liu, H.; Xia, K. (2014) A dynamic ball compression test for understanding rock crushing. Rev. Sci. Instrum., 85 (12-1), 123902. https://doi.org/10.1063/1.4902836
Neuenhofer, A.; Filippou, F.C. (1997) Evaluation of nonlinear frame finite-element models. J. Struct. Eng-ASCE, 123(7), 958-966. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:7(958)
Park, Y.J.; Ang, A.H.S (1985) Mechanistic seismic damage model for reinforced concrete. J. Struct. Eng-ASCE, 111 (4), 722-739. https://doi.org/10.1061/(ASCE)0733-9445(1985)111:4(722)
Huang, Z.M.; Chen, T. (2003) Comparison between flexibility- based and stiffness-based nonlinear beam-column elements. Gongcheng Lixue, 20 (5), 24-31.
Li, S.; Zhai, C.H.; Xie, L.L. (2009) Review of flexibilitybased finite element method for beam-column elements. J. Harbin Inst. Technol., 16(1), 81-86.
Alemdar, B.N.; White, D.W. (2005) Displacement, flexibility, and mixed beam-column finite element formulations for distributed plasticity analysis. J. Struct. Eng-ASCE, 131(12), 1811-1819. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:12(1811)
Bento, R.; Bhatt, C.; Pinho, R. (2010) Using nonlinear static procedures for seismic assessment of the 3D irregular SPEAR building. Earthqu. Struct., 1(2), 177-195. https://doi.org/10.12989/eas.2010.1.2.177
Mostafa, M.; Sivaselvan, M.V.; Felippa, C.A. (2013) Reusing linear finite elements in material and geometrically nonlinear analysis - Application to plane stress problems. Finite. Elem. Anal. Des., 69, 62-72. https://doi.org/10.1016/j.finel.2013.02.002
Scott, M.H.; Fenves, G.L. (2006) A plastic hinge simulation model for reinforced concrete members. 17th Anal. Comput. Spec. Conf., 7. https://doi.org/10.1061/40878(202)16
Karatarakis, A.; Metsis, P.; Papadrakakis, M. (2013) GPUacceleration of stiffness matrix calculation and efficient initialization of EFG meshless methods. Comput. Methods Appl. Mech. Eng., 258, 63-80. https://doi.org/10.1016/j.cma.2013.02.011
Montella, G.; Calabrese, A.; Serino, G. (2014) Mechanical characterization of a Tire Derived Material: Experiments, hyperelastic modeling and numerical validation. Construcc. Build. Mat., 66, 336-347. https://doi.org/10.1016/j.conbuildmat.2014.05.078
Spizzuoco, M.; Calabrese, A.; Serino, G. (2014) Innovative low-cost recycled rubber-fiber reinforced isolator: Experimental tests and Finite Element Analyses. Eng. Struct., 76, 99-111. https://doi.org/10.1016/j.engstruct.2014.07.001
Smyrou, E.; Blandon, C.; Antoniou, S.; Pinho, R.; Crisafulli, F. (2011) Implementation and verification of a masonry panel model for nonlinear dynamic analysis of infilled RC frames. Bull. Earthquake Engin., 9 (5), 1519-1534. https://doi.org/10.1007/s10518-011-9262-6
EN 1998-6 (2005): Eurocode 8: Design of structures for earthquake resistance.
EN 1996-1-1 (2005) Eurocode 6: Design of masonry structures.
Mostafaei, H.; Vecchio, F.J.; Kabeyasawa, T. (2008) Nonlinear displacement-based response prediction of reinforced concrete columns. Eng. Struct., 30(9), 2436-2447. https://doi.org/10.1016/j.engstruct.2008.01.020
RENADIC. University of Chile. Faculty of physics sciences and mathematics (Spanish) Available at: http://www. renadic.cl/ (July 2015).
Manfredi, G. (2001) Evaluation of seismic energy demand. Earthqua. Eng. Struct. Dyn., 30 (4), 485-499. https://doi.org/10.1002/eqe.17
Arias, A. (1969) Measure of earthquake intensity pp. 438-483.
ASTM C62 - 10. Standard Specification for Building Brick (Solid Masonry Units Made From Clay or Shale)
Demir I. (2008) Effect of organic residues addition on the technological properties of clay bricks. Waste Manage., 28, 622-627. https://doi.org/10.1016/j.wasman.2007.03.019 PMid:17512183
Eliche-Quesada, D.; Corpas-Iglesias, F.A.; Pérez-Villarejo, L.; Iglesias-Godino, F.J. (2012) Recycling of sawdust, spent earth from oil filtration, compost and marble residues for brick manufacturing. Construcc. Build. Mat., 34, 275-284. https://doi.org/10.1016/j.conbuildmat.2012.02.079
Barbieri L.; Andreola F.; Lancellotti I.; Taurino R. (2013). Management of agricultural biomass wastes: Preliminary study on characterization and valorisation in clay matrix bricks. Waste Manage., 33, 2307-2315. https://doi.org/10.1016/j.wasman.2013.03.014 PMid:23602302
Bánhidi, V.; Gömze, L.A. (2008) Improvement of insulation properties of conventional brick products. Mater. Sci. Forum, 589, 1-6. https://doi.org/10.4028/www.scientific.net/MSF.589.1
Elinwa, A.U. (2006) Effect of addition of sawdust ash to clay bricks. Civ. Eng. Environ. Syst., 23(4), 263-270. https://doi.org/10.1080/10286600600763149
Maciá, M. E.; Rolando A. (2013) Young modulus variation of a brickwork masonry element submitted to high temperatures. Mater. Constr., 63(309), 105-116. https://doi.org/10.3989/mc.2012.02311
Paulay T.; Priestley M.J.N. (1992) Seismic Design of Reinforced Concrete and Masonry Buildings. Jhon Wiley&Sons, Inc. New York (1192) ISBN 978-0-471-54915-4. https://doi.org/10.1002/9780470172841
Goel, R.K.; Chopra, A.K. (1998) Period formulas for concrete shear wall buildings. J. Struct. Eng-ASCE, 124 (4), 426-433. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:4(426)
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2017 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.