Comparación de Características de Resistencia y Durabilidad de un Geopolímero obtenido a partir de ceniza Volante, Fibra de Vidrio Esmerilado y Polvo de Vidrio
DOI:
https://doi.org/10.3989/mc.2017.05416Palabras clave:
Geopolímeros, Reacción alkali-sílice, Fibra de vidrio esmerilado, Ceniza volante, Polvo de vidrioResumen
Se estudiaron las características de resistencia y durabilidad de geopolímeros producidos utilizando tres precursores, formados por cenizas volantes, Fibra de Vidrio Esmerilado (FVE) y vidrio en polvo. Se utilizaron combinaciones de soluciones de hidróxido de sodio y silicato de sodio como activadores, y se investigó el efecto del diferente contenido de sodio y sílice de los activadores en la trabajabilidad y resistencia a la compresión de los geopolímeros. Los parámetros utilizados en este estudio fueron la relación de masa de Na2O-a-aglutinante (para el contenido de sodio), y SiO2-a-Na2 O del activador (para el contenido de sílice). Las mezclas de geopolímeros obtenidas a partir de cada precursor que alcanzaron la más alta resistencia a la compresión fueron evaluadas por su resistencia a la reacción álcali-sílice y comparadas con el rendimiento de las mezclas de cemento portland. Los resultados de las pruebas revelaron que la FVE y los geopolímeros a base de ceniza volante se comportaron mejor que las mezclas de geopolímeros a base de vidrio en polvo. La resistencia de los geopolímeros a base de ceniza volante y FVE a la reacción álcali-sílice fue superior que la de las mezclas de cemento portland, mientras que los geopolímeros a base de vidrio en polvo mostraron un rendimiento inferior.
Descargas
Citas
Hemmings, R. T. (2005) Process for Converting Waste Glass Fiber into Value Added Products, Final Report (No. DOE GO13015-1). Albacem LLC. https://doi.org/10.2172/889402
Chen, C. H.; Huang, R.; Wu J. K.; Yang, C. C. (2006) Waste E-glass particles used in cementitious mixtures. Cem. Concr. Res. 36 [3], 449-456. https://doi.org/10.1016/j.cemconres.2005.12.010
Hossain, A.; Shirazi, S.; Persun, J.; Neithalath, N. (2008) Properties of concrete containing vitreous calcium aluminosilicate pozzolan. J Transp. Res. Record. (2070), 32-38. https://doi.org/10.3141/2070-05
Neithalath, N.; Persun, J.; Hossain, A. (2009) Hydration in high-performance cementitious systems containing vitreous calcium aluminosilicate or silica fume. Cem. Concr. Res. 39 [6], 473-481. https://doi.org/10.1016/j.cemconres.2009.03.006
Tashima, M. M.; Soriano, L.; Borrachero, M. V.; Monzó, J.; Cheeseman C. R.; Payá, J. (2012) Alkali activation of vitreous calcium aluminosilicate derived from glass fiber waste. Journal of Sustainable Cement-Based Materials. 1 [3], 83-93. https://doi.org/10.1080/21650373.2012.742610
Tashima, M. M.; Soriano, L.; Monzo, J.; Borrachero, M. V.; Paya, J. (2013) Novel geopolymeric material cured at room temperature. Adv. App. Ceram. 112 [4], 179-183. https://doi.org/10.1179/1743676112Y.0000000056
Duxson, P.; Fernández-Jiménez, A.; Provis, J.L.; Lukey, G.C.; Palomo, A.; Van Deventer, J.S.J. (2007) Geopolymer technology: the current state of the art. J. Mater. Sci. 42 [9], 2917-2933. https://doi.org/10.1007/s10853-006-0637-z
Ganesan, N.; Abraham, R.; Raj, S.D.; Sasi, D.; (2014) Stress–strain behaviour of confined Geopolymer concrete. Constr. Build. Mater. 73, 326-331. https://doi.org/10.1016/j.conbuildmat.2014.09.092
Morsy, M.S.; Alsayed, S.H.; Al-Salloum, Y.; Almusallam, T. (2014) Effect of sodium silicate to sodium hydroxide ratios on strength and microstructure of fly ash geopolymer binder. Arab. J Sci. Eng. 39 [6], 4333-4339. https://doi.org/10.1007/s13369-014-1093-8
Van Jaarsveld, J.G.S.; Van Deventer, J.S.J; Lukey, G.C. (2003) The characterization of source materials in fly ashbased geopolymers. Mater. Lett. 57 [7], 1272-1280. https://doi.org/10.1016/S0167-577X(02)00971-0
Ryu, G.S.; Lee, Y.B.; Koh, K.T; Chung, Y.S. (2013) The mechanical properties of fly ash-based geopolymer concrete with alkaline activators. Constr. Build. Mater. 47, 409-418. https://doi.org/10.1016/j.conbuildmat.2013.05.069
Li, C.; Sun, H.; Li, L. (2010) A review: The comparison between alkali-activated slag (Si+ Ca) and metakaolin (Si+Al) cements. Cem. Concr. Res. 40 [9], 1341-1349. https://doi.org/10.1016/j.cemconres.2010.03.020
Kumar, S.; Kumar, R.; Mehrotra, S.P.; (2010) Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer. J. Mater. Sci. 45 [3], 607-615. https://doi.org/10.1007/s10853-009-3934-5
Oh, J.E.; Monteiro, P.J.; Jun, S.S.; Choi, S; Clark, S.M. (2010) The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers. Cem. Concr. Res. 40 [2], 189-196. https://doi.org/10.1016/j.cemconres.2009.10.010
Xu, H.; Van Deventer, J.S. (2002) Geopolymerisation of multiple minerals. Miner. Eng. 15 [12], 1131-1139. https://doi.org/10.1016/S0892-6875(02)00255-8
Anuar, K.A.; Ridzuan, A.R.M.; Ismail, S. (2011) Strength characteristic of geopolymer concrete containing recycled concrete aggregate. International Journal of Civil & Environmental Engineering IJCEE-IJENS. 11 [1], http://ijens.org/Vol%2011%20I%2001/119601-2323%20IJCEEIJENS.pdf
Bhutta, M.A.R.; Hussin, W.M.; Azreen, M; Tahir, M.M. (2014) Sulphate resistance of geopolymer concrete prepared from blended waste fuel ash. J Mater Civil Eng. 26. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001030
Trochez, J. J.; Mejía de Gutiérrez, R.; Rivera, J.; Bernal, S. A. (2015). Synthesis of geopolymer from spent FCC: Effect of SiO2/Al2O3 and Na2O/SiO2 molar ratios. Mater. Construcc. 65 [317].
Pascual, A. B.; Tognonvi, M. T.; Tagnit-Hamou, A. (2014). Waste glass powder-based alkali-activated mortar. In NTCC2014: International Conference on Non-Traditional Cement and Concrete.
Sukmak, P.; Horpibulsuk, S.; Shen, S.L. (2013) Strength development in clay–fly ash geopolymer. Constr. Build. Mater. 40, 566-574. https://doi.org/10.1016/j.conbuildmat.2012.11.015
Nazari, A.; Maghsoudpour, A. and Sanjayan, J.G. (2014) Characteristics of boroaluminosilicate geopolymers. Constr. Build. Mater. 70, 262-268. https://doi.org/10.1016/j.conbuildmat.2014.07.087
Robayo, R. A.; Mejía de Gutiérrez, R.; Gordillo, M. (2016) Natural pozzolan-and granulated blast furnace slag-based binary geopolymers. Mater. Construcc. 66 [321].
Wang, H.; Li, H.; Yan, F. (2005) Synthesis and mechanical properties of metakaolinite-based geopolymer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 268 [1], 1-6. https://doi.org/10.1016/j.colsurfa.2005.01.016
Hardjito, D.; Wallah, S.E.; Sumajouw, D.M; Rangan, B.V. (2004). On the development of fly ash-based geopolymer concrete. ACI materials journal, 101 [6].
Phair, J.W.; and Van Deventer, J.S.J. (2002) Effect of the silicate activator pH on the microstructural characteristics of waste-based geopolymers. Int. J Miner. Process. 66 [1]. https://doi.org/10.1016/S0301-7516(02)00013-3
Palomo, A.; Grutzeck, M.W.; Blanco, M.T. (1999) Alkali-activated fly ashes: a cement for the future. Cem. Concr. Res. 29 [8], 1323-1329. https://doi.org/10.1016/S0008-8846(98)00243-9
Buchwald, A.; Dombrowski, K; Weil, M. (2005) The influence of calcium content on the performance of geopolymeric binder especially the resistance against acids. Proceedings of the world geopolymer. St. Quentin, France (2005).
Lee, W. K. W.; Van Deventer, J. S. J. (2002) The effect of ionic contaminants on the early-age properties of alkaliactivated fly ash-based cements. Cem. Concr. Res. 32 [4], 577-584. https://doi.org/10.1016/S0008-8846(01)00724-4
Xu, H.; Van Deventer, J. S. J. (2000) The geopolymerisation of alumino-silicate minerals. Int. J Miner. Process. 59 [3], 247-266. https://doi.org/10.1016/S0301-7516(99)00074-5
De Silva, P.; Sagoe-Crenstil, K.; Sirivivatnanon, V. (2007) Kinetics of geopolymerization: role of Al2O3 and SiO2. Cem. Concr. Res. 37 [4], 512-518. https://doi.org/10.1016/j.cemconres.2007.01.003
Kouamo, H. T.; Elimbi, A.; Mbey, J. A.; Sabouang, C. N.; Njopwouo, D. (2012) The effect of adding alumina-oxide to metakaolin and volcanic ash on geopolymer products: A comparative study. Constr. Build. Mater. 35, 960-969. https://doi.org/10.1016/j.conbuildmat.2012.04.023
Duxson, P.; Provis, J. L.; Lukey, G. C.; Mallicoat, S. W.; Kriven, W. M.; Van Deventer, J. S. (2005). Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 269 [1], 47-58. https://doi.org/10.1016/j.colsurfa.2005.06.060
Kupwade-Patil, K.; Allouche, E.N. (2013) Impact of Alkali Silica Reaction on Fly Ash-Based Geopolymer Concrete. J Mater Civil Eng. 25 [1], 131-139. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000579
Puertas, F.; Palacios, M.; Gil-Maroto; A. and Vázquez, T. (2009) Alkali-aggregate behaviour of alkali-activated slag mortars: Effect of aggregate type. Cem. Concr. Comp. 31 [5], 277-284. https://doi.org/10.1016/j.cemconcomp.2009.02.008
Fernández-Jiménez, A.; Garcia-Lodeiro, I.; Palomo, A. (2007) Durability of alkali-activated fly ash cementitious materials. J. Mater. Sci. 42(9), 3055-3065. https://doi.org/10.1007/s10853-006-0584-8
Xie, Z.; Xiang, W.; Xi, Y. (2003) ASR potentials of glass aggregates in water-glass activated fly ash and portland cement mortars. J Mater Civil Eng. 15 [1], 67-74. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:1(67)
Pouhet, R.; Cyr, M. (2015) Alkali–silica reaction in metakaolin-based geopolymer mortar. Mater Struct, 48 [3], 571-583. https://doi.org/10.1617/s11527-014-0445-x
ASTM International: Standard Specification for Portland cement (ASTM C150) (2016).
ASTM International: Standard Test Method for Flow of Hydraulic Cement Mortar (ASTM C1437) (2013).
ASTM International: Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens) (ASTM C109) (2013).
Struble, L; Hicks, J. K. (2013) Geopolymer Binder Systems, ASTM International. New York, (2013). https://doi.org/10.1520/STP1566-EB
Palomo, A.; Alonso, S., Fernandez-Jiménez, A.; Sobrados, I.; Sanz, J. (2004) Alkaline activation of fly ashes: NMR study of the reaction products. J Am. Ceram. Soc. 87 [6], 1141-1145. https://doi.org/10.1111/j.1551-2916.2004.01141.x
ASTM International: Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method) (ASTM C1260) (2014).
Sathonsaowaphak, A.; Chindaprasirt, P.; Pimraksa, K. (2009) Workability and strength of lignite bottom ash geopolymer mortar. J Hazard. Mater. 168 [1], 44-50. https://doi.org/10.1016/j.jhazmat.2009.01.120 PMid:19264400
Malkawi, A. B.; Nuruddin, M. F.; Fauzi, A.; Almattarneh, H.; Mohammed, B. S. (2016) Effects of Alkaline Solution on Properties of the HCFA Geopolymer Mortars. Procedia Engineering. 148, 710-717. https://doi.org/10.1016/j.proeng.2016.06.581
Chindaprasirt, P.; Chareerat, T.; Sirivivatnanon, V. (2007) Workability and strength of coarse high calcium fly ash geopolymer. Cem. Concr. Comp. 29 [3], 224-229. https://doi.org/10.1016/j.cemconcomp.2006.11.002
Bhowmick, A.; Ghosh, S. (2012) Effect of synthesizing parameters on workability and compressive strength of fly ash based geopolymer mortar. International journal of civil and structural engineering, 3 [1], http://www.ipublishing.co.in/ijcserarticles/twelve/lpages/0301/jcserlpvol3issue100016.html.
Yip, C.K.; Lukey, G.C.; Van Deventer, J.S.J. (2005) The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation. Cem. Concr. Res. 35 [9], 1688-1697. https://doi.org/10.1016/j.cemconres.2004.10.042
Yao, Z.; Ye, Y.; Xia, M. (2013) Synthesis and characterization of lithium zeolites with ABW type from coal fly ash. Environmental Progress & Sustainable Energy. 32 [3], 790-796. https://doi.org/10.1002/ep.11689
Fernández-Jiménez, A.; Palomo, A.; Sobrados, I.; Sanz, J. (2006) The role played by the reactive alumina content in the alkaline activation of fly ashes. Micropor. Mesopor. Mat. 91 [1], 111-119. https://doi.org/10.1016/j.micromeso.2005.11.015
Temuujin, J.; Van Riessen, A. (2009) Effect of fly ash preliminary calcination on the properties of geopolymer. J Hazard. Mater. 164 [2], 634-639. https://doi.org/10.1016/j.jhazmat.2008.08.065 PMid:18824295
Glasser, L.S.D.; Harvey, G. (1984) The unexpected behaviour of potassium aluminosilicate solutions. Journal of the Chemical Society, Chem. Commun. 10, 664-665. https://doi.org/10.1039/c39840000664
Davidovits, J. (1999) Chemistry of geopolymeric systems, terminology. In: Proceedings of 99 International Conference. France. 9-40.
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2017 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.