Comparación de Características de Resistencia y Durabilidad de un Geopolímero obtenido a partir de ceniza Volante, Fibra de Vidrio Esmerilado y Polvo de Vidrio

Autores/as

  • H. Rashidian-Dezfouli Glenn Department of Civil Engineering, Clemson University
  • P. R. Rangaraju Glenn Department of Civil Engineering, Clemson University

DOI:

https://doi.org/10.3989/mc.2017.05416

Palabras clave:

Geopolímeros, Reacción alkali-sílice, Fibra de vidrio esmerilado, Ceniza volante, Polvo de vidrio

Resumen


Se estudiaron las características de resistencia y durabilidad de geopolímeros producidos utilizando tres precursores, formados por cenizas volantes, Fibra de Vidrio Esmerilado (FVE) y vidrio en polvo. Se utilizaron combinaciones de soluciones de hidróxido de sodio y silicato de sodio como activadores, y se investigó el efecto del diferente contenido de sodio y sílice de los activadores en la trabajabilidad y resistencia a la compresión de los geopolímeros. Los parámetros utilizados en este estudio fueron la relación de masa de Na2O-a-aglutinante (para el contenido de sodio), y SiO2-a-Na2 O del activador (para el contenido de sílice). Las mezclas de geopolímeros obtenidas a partir de cada precursor que alcanzaron la más alta resistencia a la compresión fueron evaluadas por su resistencia a la reacción álcali-sílice y comparadas con el rendimiento de las mezclas de cemento portland. Los resultados de las pruebas revelaron que la FVE y los geopolímeros a base de ceniza volante se comportaron mejor que las mezclas de geopolímeros a base de vidrio en polvo. La resistencia de los geopolímeros a base de ceniza volante y FVE a la reacción álcali-sílice fue superior que la de las mezclas de cemento portland, mientras que los geopolímeros a base de vidrio en polvo mostraron un rendimiento inferior.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Hemmings, R. T. (2005) Process for Converting Waste Glass Fiber into Value Added Products, Final Report (No. DOE GO13015-1). Albacem LLC. https://doi.org/10.2172/889402

Chen, C. H.; Huang, R.; Wu J. K.; Yang, C. C. (2006) Waste E-glass particles used in cementitious mixtures. Cem. Concr. Res. 36 [3], 449-456. https://doi.org/10.1016/j.cemconres.2005.12.010

Hossain, A.; Shirazi, S.; Persun, J.; Neithalath, N. (2008) Properties of concrete containing vitreous calcium aluminosilicate pozzolan. J Transp. Res. Record. (2070), 32-38. https://doi.org/10.3141/2070-05

Neithalath, N.; Persun, J.; Hossain, A. (2009) Hydration in high-performance cementitious systems containing vitreous calcium aluminosilicate or silica fume. Cem. Concr. Res. 39 [6], 473-481. https://doi.org/10.1016/j.cemconres.2009.03.006

Tashima, M. M.; Soriano, L.; Borrachero, M. V.; Monzó, J.; Cheeseman C. R.; Payá, J. (2012) Alkali activation of vitreous calcium aluminosilicate derived from glass fiber waste. Journal of Sustainable Cement-Based Materials. 1 [3], 83-93. https://doi.org/10.1080/21650373.2012.742610

Tashima, M. M.; Soriano, L.; Monzo, J.; Borrachero, M. V.; Paya, J. (2013) Novel geopolymeric material cured at room temperature. Adv. App. Ceram. 112 [4], 179-183. https://doi.org/10.1179/1743676112Y.0000000056

Duxson, P.; Fernández-Jiménez, A.; Provis, J.L.; Lukey, G.C.; Palomo, A.; Van Deventer, J.S.J. (2007) Geopolymer technology: the current state of the art. J. Mater. Sci. 42 [9], 2917-2933. https://doi.org/10.1007/s10853-006-0637-z

Ganesan, N.; Abraham, R.; Raj, S.D.; Sasi, D.; (2014) Stress–strain behaviour of confined Geopolymer concrete. Constr. Build. Mater. 73, 326-331. https://doi.org/10.1016/j.conbuildmat.2014.09.092

Morsy, M.S.; Alsayed, S.H.; Al-Salloum, Y.; Almusallam, T. (2014) Effect of sodium silicate to sodium hydroxide ratios on strength and microstructure of fly ash geopolymer binder. Arab. J Sci. Eng. 39 [6], 4333-4339. https://doi.org/10.1007/s13369-014-1093-8

Van Jaarsveld, J.G.S.; Van Deventer, J.S.J; Lukey, G.C. (2003) The characterization of source materials in fly ashbased geopolymers. Mater. Lett. 57 [7], 1272-1280. https://doi.org/10.1016/S0167-577X(02)00971-0

Ryu, G.S.; Lee, Y.B.; Koh, K.T; Chung, Y.S. (2013) The mechanical properties of fly ash-based geopolymer concrete with alkaline activators. Constr. Build. Mater. 47, 409-418. https://doi.org/10.1016/j.conbuildmat.2013.05.069

Li, C.; Sun, H.; Li, L. (2010) A review: The comparison between alkali-activated slag (Si+ Ca) and metakaolin (Si+Al) cements. Cem. Concr. Res. 40 [9], 1341-1349. https://doi.org/10.1016/j.cemconres.2010.03.020

Kumar, S.; Kumar, R.; Mehrotra, S.P.; (2010) Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer. J. Mater. Sci. 45 [3], 607-615. https://doi.org/10.1007/s10853-009-3934-5

Oh, J.E.; Monteiro, P.J.; Jun, S.S.; Choi, S; Clark, S.M. (2010) The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers. Cem. Concr. Res. 40 [2], 189-196. https://doi.org/10.1016/j.cemconres.2009.10.010

Xu, H.; Van Deventer, J.S. (2002) Geopolymerisation of multiple minerals. Miner. Eng. 15 [12], 1131-1139. https://doi.org/10.1016/S0892-6875(02)00255-8

Anuar, K.A.; Ridzuan, A.R.M.; Ismail, S. (2011) Strength characteristic of geopolymer concrete containing recycled concrete aggregate. International Journal of Civil & Environmental Engineering IJCEE-IJENS. 11 [1], http://ijens.org/Vol%2011%20I%2001/119601-2323%20IJCEEIJENS.pdf

Bhutta, M.A.R.; Hussin, W.M.; Azreen, M; Tahir, M.M. (2014) Sulphate resistance of geopolymer concrete prepared from blended waste fuel ash. J Mater Civil Eng. 26. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001030

Trochez, J. J.; Mejía de Gutiérrez, R.; Rivera, J.; Bernal, S. A. (2015). Synthesis of geopolymer from spent FCC: Effect of SiO2/Al2O3 and Na2O/SiO2 molar ratios. Mater. Construcc. 65 [317].

Pascual, A. B.; Tognonvi, M. T.; Tagnit-Hamou, A. (2014). Waste glass powder-based alkali-activated mortar. In NTCC2014: International Conference on Non-Traditional Cement and Concrete.

Sukmak, P.; Horpibulsuk, S.; Shen, S.L. (2013) Strength development in clay–fly ash geopolymer. Constr. Build. Mater. 40, 566-574. https://doi.org/10.1016/j.conbuildmat.2012.11.015

Nazari, A.; Maghsoudpour, A. and Sanjayan, J.G. (2014) Characteristics of boroaluminosilicate geopolymers. Constr. Build. Mater. 70, 262-268. https://doi.org/10.1016/j.conbuildmat.2014.07.087

Robayo, R. A.; Mejía de Gutiérrez, R.; Gordillo, M. (2016) Natural pozzolan-and granulated blast furnace slag-based binary geopolymers. Mater. Construcc. 66 [321].

Wang, H.; Li, H.; Yan, F. (2005) Synthesis and mechanical properties of metakaolinite-based geopolymer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 268 [1], 1-6. https://doi.org/10.1016/j.colsurfa.2005.01.016

Hardjito, D.; Wallah, S.E.; Sumajouw, D.M; Rangan, B.V. (2004). On the development of fly ash-based geopolymer concrete. ACI materials journal, 101 [6].

Phair, J.W.; and Van Deventer, J.S.J. (2002) Effect of the silicate activator pH on the microstructural characteristics of waste-based geopolymers. Int. J Miner. Process. 66 [1]. https://doi.org/10.1016/S0301-7516(02)00013-3

Palomo, A.; Grutzeck, M.W.; Blanco, M.T. (1999) Alkali-activated fly ashes: a cement for the future. Cem. Concr. Res. 29 [8], 1323-1329. https://doi.org/10.1016/S0008-8846(98)00243-9

Buchwald, A.; Dombrowski, K; Weil, M. (2005) The influence of calcium content on the performance of geopolymeric binder especially the resistance against acids. Proceedings of the world geopolymer. St. Quentin, France (2005).

Lee, W. K. W.; Van Deventer, J. S. J. (2002) The effect of ionic contaminants on the early-age properties of alkaliactivated fly ash-based cements. Cem. Concr. Res. 32 [4], 577-584. https://doi.org/10.1016/S0008-8846(01)00724-4

Xu, H.; Van Deventer, J. S. J. (2000) The geopolymerisation of alumino-silicate minerals. Int. J Miner. Process. 59 [3], 247-266. https://doi.org/10.1016/S0301-7516(99)00074-5

De Silva, P.; Sagoe-Crenstil, K.; Sirivivatnanon, V. (2007) Kinetics of geopolymerization: role of Al2O3 and SiO2. Cem. Concr. Res. 37 [4], 512-518. https://doi.org/10.1016/j.cemconres.2007.01.003

Kouamo, H. T.; Elimbi, A.; Mbey, J. A.; Sabouang, C. N.; Njopwouo, D. (2012) The effect of adding alumina-oxide to metakaolin and volcanic ash on geopolymer products: A comparative study. Constr. Build. Mater. 35, 960-969. https://doi.org/10.1016/j.conbuildmat.2012.04.023

Duxson, P.; Provis, J. L.; Lukey, G. C.; Mallicoat, S. W.; Kriven, W. M.; Van Deventer, J. S. (2005). Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 269 [1], 47-58. https://doi.org/10.1016/j.colsurfa.2005.06.060

Kupwade-Patil, K.; Allouche, E.N. (2013) Impact of Alkali Silica Reaction on Fly Ash-Based Geopolymer Concrete. J Mater Civil Eng. 25 [1], 131-139. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000579

Puertas, F.; Palacios, M.; Gil-Maroto; A. and Vázquez, T. (2009) Alkali-aggregate behaviour of alkali-activated slag mortars: Effect of aggregate type. Cem. Concr. Comp. 31 [5], 277-284. https://doi.org/10.1016/j.cemconcomp.2009.02.008

Fernández-Jiménez, A.; Garcia-Lodeiro, I.; Palomo, A. (2007) Durability of alkali-activated fly ash cementitious materials. J. Mater. Sci. 42(9), 3055-3065. https://doi.org/10.1007/s10853-006-0584-8

Xie, Z.; Xiang, W.; Xi, Y. (2003) ASR potentials of glass aggregates in water-glass activated fly ash and portland cement mortars. J Mater Civil Eng. 15 [1], 67-74. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:1(67)

Pouhet, R.; Cyr, M. (2015) Alkali–silica reaction in metakaolin-based geopolymer mortar. Mater Struct, 48 [3], 571-583. https://doi.org/10.1617/s11527-014-0445-x

ASTM International: Standard Specification for Portland cement (ASTM C150) (2016).

ASTM International: Standard Test Method for Flow of Hydraulic Cement Mortar (ASTM C1437) (2013).

ASTM International: Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens) (ASTM C109) (2013).

Struble, L; Hicks, J. K. (2013) Geopolymer Binder Systems, ASTM International. New York, (2013). https://doi.org/10.1520/STP1566-EB

Palomo, A.; Alonso, S., Fernandez-Jiménez, A.; Sobrados, I.; Sanz, J. (2004) Alkaline activation of fly ashes: NMR study of the reaction products. J Am. Ceram. Soc. 87 [6], 1141-1145. https://doi.org/10.1111/j.1551-2916.2004.01141.x

ASTM International: Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method) (ASTM C1260) (2014).

Sathonsaowaphak, A.; Chindaprasirt, P.; Pimraksa, K. (2009) Workability and strength of lignite bottom ash geopolymer mortar. J Hazard. Mater. 168 [1], 44-50. https://doi.org/10.1016/j.jhazmat.2009.01.120 PMid:19264400

Malkawi, A. B.; Nuruddin, M. F.; Fauzi, A.; Almattarneh, H.; Mohammed, B. S. (2016) Effects of Alkaline Solution on Properties of the HCFA Geopolymer Mortars. Procedia Engineering. 148, 710-717. https://doi.org/10.1016/j.proeng.2016.06.581

Chindaprasirt, P.; Chareerat, T.; Sirivivatnanon, V. (2007) Workability and strength of coarse high calcium fly ash geopolymer. Cem. Concr. Comp. 29 [3], 224-229. https://doi.org/10.1016/j.cemconcomp.2006.11.002

Bhowmick, A.; Ghosh, S. (2012) Effect of synthesizing parameters on workability and compressive strength of fly ash based geopolymer mortar. International journal of civil and structural engineering, 3 [1], http://www.ipublishing.co.in/ijcserarticles/twelve/lpages/0301/jcserlpvol3issue100016.html.

Yip, C.K.; Lukey, G.C.; Van Deventer, J.S.J. (2005) The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation. Cem. Concr. Res. 35 [9], 1688-1697. https://doi.org/10.1016/j.cemconres.2004.10.042

Yao, Z.; Ye, Y.; Xia, M. (2013) Synthesis and characterization of lithium zeolites with ABW type from coal fly ash. Environmental Progress & Sustainable Energy. 32 [3], 790-796. https://doi.org/10.1002/ep.11689

Fernández-Jiménez, A.; Palomo, A.; Sobrados, I.; Sanz, J. (2006) The role played by the reactive alumina content in the alkaline activation of fly ashes. Micropor. Mesopor. Mat. 91 [1], 111-119. https://doi.org/10.1016/j.micromeso.2005.11.015

Temuujin, J.; Van Riessen, A. (2009) Effect of fly ash preliminary calcination on the properties of geopolymer. J Hazard. Mater. 164 [2], 634-639. https://doi.org/10.1016/j.jhazmat.2008.08.065 PMid:18824295

Glasser, L.S.D.; Harvey, G. (1984) The unexpected behaviour of potassium aluminosilicate solutions. Journal of the Chemical Society, Chem. Commun. 10, 664-665. https://doi.org/10.1039/c39840000664

Davidovits, J. (1999) Chemistry of geopolymeric systems, terminology. In: Proceedings of 99 International Conference. France. 9-40.

Publicado

2017-12-30

Cómo citar

Rashidian-Dezfouli, H., & Rangaraju, P. R. (2017). Comparación de Características de Resistencia y Durabilidad de un Geopolímero obtenido a partir de ceniza Volante, Fibra de Vidrio Esmerilado y Polvo de Vidrio. Materiales De Construcción, 67(328), e136. https://doi.org/10.3989/mc.2017.05416

Número

Sección

Artículos