Using petrographic techniques to evaluate the induced effects of NaCl, extreme climatic conditions, and traffic load on Spanish road surfaces

Authors

DOI:

https://doi.org/10.3989/mc.2017.07516

Keywords:

Aggregate, Asphalt surface, Winter maintenance, Traffic, Petrography

Abstract


The asphalt surface layer is the most exposed to weather and traffic conditions on roads, especially those subjected to winter maintenance. Therefore, a deep knowledge of the mechanisms which can damage this layer is necessary to improve its design, construction and long-term use. With this purpose, two types of asphalt mixtures used on roads from NW Spain were subjected to durability tests (freezing-thaw and thermal-stress) with a saturated NaCl solution. After the durability tests, a wheel tracking test was performed on the samples, and the resultant material was analyzed by optical polarized light and fluorescence microscopy. This analysis showed that the binder-aggregate low adhesion was the main responsible of the asphalt mixture damage. This damage was concentrated in the aggregates because the binder acted as an impermeable wall. Consequently, the NaCl solution penetrated and degraded the aggregates quickly and strongly.

Downloads

Download data is not yet available.

References

Potti, J. J.; de Asefma, P. E. (2012). Los mensajes sobre la conservación y la realidad de la conservación de nuestros firmes de carreteras. Carreteras: Revista técnica de la Asociación Espa-ola de la Carretera, (186), 24–33.

Pérez-Fortes, A. P. (2015). Quality and durability of metamorphic crushed stone aggregates used in Galician asphalt pavements subjected to the effect of NaCl and extreme climates. PhD thesis, Universidad Complutense de Madrid, 452 pp.

Shi, X.; Akin, M.; Pan, T.; Fay, L.; Liu, Y.; Yang, Z. (2009). Deicer impacts on pavement materials: Introduction and recent developments. Open Civil Engineering Journal, 3, 16–27. https://doi.org/10.2174/1874149500903010016

Hassan, Y.; Abd El Halim, A. O.; Razaqpur, A. G.; Bekheet, W.; Farha, M. H. (2002). Effects of runway deicers on pavement materials and mixes: comparison with road salt. J. Transp. Eng. 128(4), 385–391. https://doi.org/10.1061/(ASCE)0733-947X(2002)128:4(385)

Feng, D.; Yi, J.; Wang, D.; Chen, L. (2010). Impact of salt and freeze–thaw cycles on performance of asphalt mixtures in coastal frozen region of China. Cold. Reg. Sci. Technol. 62(1), 34–41. https://doi.org/10.1016/j.coldregions.2010.02.002

Tarrer, A. R.; Wagh, V. (1991). The effect of the physical and chemical characteristics of the aggregate on bonding (No. SHRP-A/UIR-91-507). Washington, DC: Strategic Highway Research Program, National Research Council. 31 pp.

Bagampadde, U.; Isacsson, U.; Kiggundu, B. M. (2004). Classical and contemporary aspects of stripping in bituminous mixes. Road. Mater. Pavement., 5(1), 7–43. https://doi.org/10.1080/14680629.2004.9689961

Airey, G. D.; Collop, A. C.; Zoorob, S. E.; Elliott, R. C. (2008). The influence of aggregate, filler and bitumen on asphalt mixture moisture damage. Constr. Build. Mater., 22(9), 2015–2024. https://doi.org/10.1016/j.conbuildmat.2007.07.009

Cui, S.; Blackman, B. R.; Kinloch, A. J.; Taylor, A. C. (2014). Durability of asphalt mixtures: Effect of aggregate type and adhesion promoters. International J Adhesion, 54, 100–111. https://doi.org/10.1016/j.ijadhadh.2014.05.009

Horgnies, M.; Darque-Ceretti, E.; Fezai, H.; Felder, E. (2011). Influence of the interfacial composition on the adhesion between aggregates and bitumen: Investigations by EDX, XPS and peel tests. J Adhesion, 31(4), 238–247. https://doi.org/10.1016/j.ijadhadh.2011.01.005

Abo-Qudais, S.; Al-Shweily, H. (2007). Effect of aggregate properties on asphalt mixtures stripping and creep behavior. Constr. Build. Mater, 21(9), 1886–1898. https://doi.org/10.1016/j.conbuildmat.2005.07.014

Fromm, H.J., (1974). The mechanisms of asphalt stripping from aggregate surfaces. J. Assoc. Asphalt. Pav., 43, 191–219.

Bagampadde, U. (2004). On investigation of stripping propensity of bituminous mixtures. Licentiate thesis. Division of Highway Engineering. 102 pp.

Vuorinen, M.; Hartikainen, O. P. (2001). A new ultrasonic method for measuring stripping resistance of bitumen on aggregate. Road. Mater. Pavement, 2(3), 297–309. https://doi.org/10.1080/14680629.2001.9689905

Bagampadde, U.; Isacsson, U.; Kiggundu, B. M. (2005). Influence of aggregate chemical and mineralogical composition on stripping in bituminous mixtures. Int. J. Pavement. Eng., 6(4), 229–239. https://doi.org/10.1080/10298430500440796

UNE-EN 13043 (2003). Aggregates for bituminous mixtures and surface treatments for roads, airfields and other trafficied areas. Spanish Association for Normalization and Certification (AENOR), Madrid.

Ersoy, A.; Waller, M. D. (1995). Textural characterization of rocks. Eng. Geol., 39(3), 123–136. https://doi.org/10.1016/0013-7952(95)00005-Z

Tuğrul, A.; Zarif, I. H. (1999). Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey. Eng. Geol., 51(4), 303–317. https://doi.org/10.1016/S0013-7952(98)00071-4

Přikryl, R. (2001). Some microstructural aspects of strength variation in rocks. Int. J. Rock .Mech. Min., 38(5), 671-682. https://doi.org/10.1016/S1365-1609(01)00031-4

Räisänen, M. (2004). Relationships between texture and mechanical properties of hybrid rocks from the Jaala–Iitti complex, southeastern Finland. Eng. Geol., 74(3), 197–211. https://doi.org/10.1016/j.enggeo.2004.03.009

Tandon, R. S.; Gupta, V. (2013). The control of mineral constituents and textural characteristics on the petrophysical & mechanical (PM) properties of different rocks of the Himalaya. Eng. Geol., 153, 125–143. https://doi.org/10.1016/j.enggeo.2012.11.005

Freire-Lista, D.M.; Fort, R.; Varas-Muriel, M.J. (2016). Thermal stress-induced microcraking in building granite. Engineering Geological, 206, 83–93. https://doi.org/10.1016/j.enggeo.2016.03.005

Freire-Lista, D.M.; Fort, R.; Varas-Muriel, M.J. (2015). Freeze-thaw fracturing in building granites. Cold. Reg. Sci. Technol, 113, 40–51. https://doi.org/10.1016/j.coldregions.2015.01.008

Rodríguez Rey A.; Montoto San Miguel M.; Calleja Escudero L.; Gómez Ruiz de Argande-a V.; Suárez del Río L. M. (1987). Aplicación de la microscopía óptica de fluorescencia al estudio textural del clínker de cemento Pórtland. Mater. Construcc., 37(205), 17–22. https://doi.org/10.3989/mc.1987.v37.i205.875

Larbi, J. A.; Heijnen, W. M. M. (1997). Determination of the cement content of five samples of hardened concrete by means of optical microscopy. Heron, 42, 125–138.

Jakobsen, U. H.; Laugesen, P.; Thaulow, N. (1999). Determination of water-cement ratio in hardened concrete by optical fluorescence microscopy. ACI Special Publication, 191, 27–42.

Elsen, J. (2006). Microscopy of historic mortars—a review. Cem. Concr. Res., 36(8), 1416–1424. https://doi.org/10.1016/j.cemconres.2005.12.006

Binal, A. (2008). The determination of gel swelling pressure of reactive aggregates by ASGPM device and a new reactiveinnocuous aggregate decision chart. Constr. Build. Mater. 22(1), 1–13. https://doi.org/10.1016/j.conbuildmat.2007.07.021

Grantham, M. G. (Ed.). (2011). Concrete Repair: A Practical Guide. CRC Press. 328. https://doi.org/10.1201/b12433

Eriksen K. (1993). Microscopical analysis of asphalt–aggregate mixtures related to pavement performance, Report No. 245, Danish Road Institute, Denmark.

Broekmans, M. A. (2007). Failure of greenstone, jasper and cataclasite aggregate in bituminous concrete due to studded tyres: similarities and differences. Materials Characterization, 58(11), 1171–1182. https://doi.org/10.1016/j.matchar.2007.05.012

Poulikakos, L. D.; Partl, M. N. (2009). Evaluation of moisture susceptibility of porous asphalt concrete using water submersion fatigue tests. Constr. Build. Mater, 23(12), 3475–3484. https://doi.org/10.1016/j.conbuildmat.2009.08.016

Poulikakos, L. D.; Partl, M. N. (2010). Investigation of porous asphalt microstructure using optical and electron microscopy. J. Micros.c, 240(2), 145–154. https://doi.org/10.1111/j.1365-2818.2010.03388.x PMid:20946381

Izquierdo, A.; Manzano, M.; Martín, Q.; Montero, J.; Salazar, J. (2012). Evolución temporal de las olas de calor en la meseta central espa-ola, entre 1961 y 2010. Sociedad Espa-ola de Climatología, 441–448.

UNE-EN 12697-8. Mezclas bituminosas. Métodos de ensayo para mezcla bituminosa en caliente. Parte 8: Determinación del contenido de huecos en las probetas bituminosas. Asociación Espa-ola de Normalización y Certificación (AENOR), Madrid, 2003.

Scherer, G. W. (2004), Stress from Crystallization of Salt. Cem. Concr. Res., 34, [9] 1613–1624. https://doi.org/10.1016/j.cemconres.2003.12.034

Yang, Q.; X. Wu; Huang, S. (1997). Concrete Deterioration Due to Physical Attack by Salt Crystallization. In 10th International Congress on the Chemistry of Cement. Gothenburg, Sweden.

Flatt, R. J. (2002) Salt Damage in Porous Materials: How High Supersaturations Are Generated. J. Cryst. Growth., 242, 435–454. https://doi.org/10.1016/S0022-0248(02)01429-X

Sumsion, E. S.; Guthrie, W. S. (2013). Physical and Chemical Effects of Deicers on Concrete Pavement: Literature Review (No. UT-13.09). Utah Department of Transportation. 50pp. http://www.udot.utah.gov/main/uconowner.gf?n= 8081525197623431

Obika, B.; Freer-Hewish, R. J.; Fookes, P. G. (1989). Soluble salt damage to thin bituminous road and runway surfaces. Q. J. Eng. Geol. Hydroge., 22(1), 59–73. https://doi.org/10.1144/GSL.QJEG.1989.022.01.05

Obika, B.; Freer-Hewish, R. J.; Woodbridge, M.; Newill, D. (1995). Prevention of salt damage to thin bituminous surfacings: design guidelines. In Transportation Research Board Conference Proceedings (No. 6). 12 pp. PMCid:PMC1908909

DIN-EN ISO 4287 (2010–07). Geometrical product Specifications (GPS). Surface texture: Profile method. Terms, definitions and surface texture parameters. Germany.

López-Arce, P.; Gomez-Villalba, L. S.; Pinho, L.; Fernández-Valle; M. E.; de Buergo, M. Á.; Fort, R. (2010). Influence of porosity and relative humidity on consolidation of dolostone with calcium hydroxide nanoparticles: Effectiveness assessment with non-destructive techniques. Materials Characterization, 61(2), 168–184. https://doi.org/10.1016/j.matchar.2009.11.007

Vázquez-Calvo, C.; de Buergo, M. A.; Fort, R.; Varas-Muriel, M. J. (2012). The measurement of surface roughness to determine the suitability of different methods for stone cleaning. J Geophys. Eng., 9(4), 108–117. https://doi.org/10.1088/1742-2132/9/4/S108

UNE-EN 1097-6 (2014). Tests for mechanical and physical properties of aggregates - Part 6: Determination of particle density and water absorption. Spanish Association for Normalization and Certification (AENOR), Madrid.

UNE-EN 1097–2 (2010). Tests for mechanical and physical properties of aggregates - Part 2: Methods for the determination of resistance to fragmentation. Spanish Association for Normalization and Certification (AENOR), Madrid.

UNE-EN 12697–33 (2008). Bituminous mixtures - Test methods for hot mix asphalt - Part 33: Specimen prepared by roller compactor. Spanish Association for Normalization and Certification (AENOR), Madrid.

Pérez Fortes, A. P.; Varas Muriel, M. J.; Cano Linares, H; Casti-eiras García, P., Pardo Santayana, F. (2013). Petrofísica y durabilidad de las anfibolitas de Touro (A Coru-a, Espa-a) para su uso en obra civil. Boletín Geológico y Minero, 124(3), 367–369.

Pérez Fortes, A. P.; Varas Muriel, M. J.; Cano Linares, H.; Marfil Pérez, R.; Casti-eiras García, P. (2014). Durabilidad de las cuarcitas de A Fonsagrada (Lugo, Espa-a) explotadas como rocas industriales. Ingeniería civil, 173, 5–14.

UNE-EN 12697–22 (2008). Bituminous mixtures - Test methods for hot mix asphalt - Part 22: Wheel tracking. Spanish Association for Normalization and Certification (AENOR), Madrid.

Navarro Gómez, M. J. (2009). Análisis del nuevo procedimiento de compactación de probetas de mezcla bituminosa para los ensayos de pista y de fatiga. Tesina Universitat Politècnica de Catalunya, 183 pp. http://upcommons.upc.edu/handle/2099.1/8464

Varas-Muriel, M.J. (2012). Técnicas de caracterización petrográfica (II): Microscopía Óptica de Fluorescencia (MF) y Microscopía Electrónica de Barrido (MEB). En: La conservación de los geomateriales utilizados en el patrimonio. Instituto de Geociencias (UCM-CSIC). Eds. E.M. Pérez-Monserrat y R. Fort. 31–37.

Lesueur, D. (2009). The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification. Adv. Colloid. Interfac., 145(1), 42–82. https://doi.org/10.1016/j.cis.2008.08.011 PMid:19012871

Mateos, A.; Ayuso, J. P.; Cadavid Jáuregui, B. (2012). Evolution of asphalt mixture stiffness under combined effects of damage, aging, and densification under traffic. Transportation Research Record: Trans. Res. B, 2304, 185–194. https://doi.org/10.3141/2304-21

Miró, R.; Martínez, A. H.; Moreno-Navarro, F.; Rubio-Gámez, M. C. (2015). Effect of ageing and temperature on the fatigue behaviour of bitumens. Mat. Des., 86, 129–137. https://doi.org/10.1016/j.matdes.2015.07.076

Iwata, H.; Watanabe, T.; Saito, T. (2002). Study on the performance of porous asphalt pavement in winter road surface conditions. In Proceedings of the XIth PIARC International Winter Road Congress, Sapporo, Japan, 162–165.

Doré, G.; Konrad, J. M.; Roy, M. (1997). Role of deicing salt in pavement deterioration by frost action. Transportation Research Record: Trans. Res. B, 1596, 70–75. https://doi.org/10.3141/1596-11

Doré, G.; Konrad, J. M.; Roy, M. (1999). Deterioration model for pavements in frost conditions. Transportation Research Record: Trans. Res. B, 1655, 110–117. https://doi.org/10.3141/1655-15

Scott, J. A. N. (1978). Adhesion and disbonding mechanisms of asphalt used in highway construction and maintenance. In Association of Asphalt Paving Technologists Proceedings, 47, 19–43.

Judele, L. (2011). The mechanism of bitumen adhesion to aggregates: the influence of mineralogic nature. Buletinul Institutului Politehnic din lasi. Sectia Constructii, Arhitectura, 57(2), 175–181.

Buckley, J. S.; Takamura, K.; Morrow, N. R. (1989). Influence of electrical surface charges on the wetting properties of crude oils. SPE Reservoir Engineering, 4(3), 332–340. https://doi.org/10.2118/16964-PA

Majidzadeh, K.; Brovold, F. N. (1968). State of the art: Effect of water on bitumen-aggregate mixtures. Highway Research Board Special Report, 98. 88.

Gzemski, G. F.; McGlashan, W. D.; Dolch, L. W. (1968). Thermodynamic Aspects of the Stripping Problem. HR Circular, 78. Committee MC-A6 Characterisitcs of Aggregates and Fillers for Bituminous Construction. National Research Council (U.S.). Highway Research Board, Washington DC. 10 pp.

UNE-EN 12407 (2007). Natural stone test methods -Petrographic examination. Spanish Association for Normalization and Certification (AENOR), Madrid.

PG-3 (2007). Pliego de Prescripciones Técnicas Generales para Obras de Carreteras y Puentes. Dirección General de Carreteras, Ministerio de Fomento. Ediciones Liteam, Madrid. http://www.fomento.es/MFOM/LANG_CASTELLANO/DIRECCIONES_GENERALES/CARRETERAS/NORMATIVA_TECNICA/PPTG/PG3/

Published

2017-12-30

How to Cite

Pérez-Fortes, A. P., Varas-Muriel, M. J., & Castiñeiras, P. (2017). Using petrographic techniques to evaluate the induced effects of NaCl, extreme climatic conditions, and traffic load on Spanish road surfaces. Materiales De Construcción, 67(328), e138. https://doi.org/10.3989/mc.2017.07516

Issue

Section

Research Articles