Comportamiento del hormigón con árido reciclado bajo esfuerzos combinados de compresión y cizallamiento

Autores/as

  • K. Liu School of Civil Engineering, Harbin Institute of Technology https://orcid.org/0000-0002-8894-6890
  • J. Yan School of Civil Engineering, Harbin Institute of Technology - Key Lab of Structures Dynamic Behaviour and Control of the Ministry of Education1, Harbin Institute of Technology - Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology, Harbin Institute of Technology https://orcid.org/0000-0002-2781-9046
  • C. Zou School of Civil Engineering, Harbin Institute of Technology - Key Lab of Structures Dynamic Behaviour and Control of the Ministry of Education1, Harbin Institute of Technology - Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology, Harbin Institute of Technology https://orcid.org/0000-0001-9024-9560

DOI:

https://doi.org/10.3989/mc.2018.06217

Palabras clave:

Hormigón, Tratamiento de residuos, Propiedades mecánicas, Modelización

Resumen


En este estudio, se ensayaron 75 probetas cilíndricas huecas preparadas con distintos porcentajes de sustitución de árido grueso reciclado (RCA) con una máquina de ensayos auto-diseñada con el fin de investigar la resistencia del hormigón con árido reciclado (RAC) a la acción conjunta de los esfuerzos de compresión y de corte. Según los resultados obtenidos, el patrón de fractura del RAC era similar independientemente del porcentaje de sustitución. La resistencia a cortante aumentó hasta una relación de compresión axial de 0.6 y disminuyó a partir de ese valor. En el artículo se propone modificar el criterio de rotura del RAC de resistencia normal ante la acción conjunta de los esfuerzos antedichos. Se ha desarrollado un nuevo procedimiento para predecir la resistencia al corte de las vigas RAC sin estribos basándose en el criterio de rotura propuesto, consiguiéndose una mejor correlación con los resultados experimentales que en el caso de las predicciones calculadas mediante los métodos GB50010, Eurocode 2, fib Model Code 2010 y ACI 318-11.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

. Hansen, T.C. (1986) Recycled aggregates and recycled aggregate concrete second state-of-the-art report developments 1945–1985. Mater & Struct. 19[3], 201-246. https://doi.org/10.1007/BF02472036

Vázquez, E. (2013) Progress of recycling in the built environment: final report of the RILEM Technical Committee 217-PRE, Springer, Netherlands. https://doi.org/10.1007/978-94-007-4908-5

Choi, W.; Kim, S.; Yun, H. (2012) Flexural performance of reinforced recycled aggregate concrete beams. Mag Concrete Res. 64[9], 837-848. https://doi.org/10.1680/macr.11.00018

Silva, R.V.; Brito, J.; Dhir, R.K. (2014) Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production. Constr Build Mater. 65, 201-217. https://doi.org/10.1016/j.conbuildmat.2014.04.117

Tam, V.W.Y.; Wang, Z.; Tao, Z. (2014) Behaviour of recycled aggregate concrete filled stainless steel stub columns. Mater & Struct. 47[1-2], 293-310. https://doi.org/10.1617/s11527-013-0061-1

Khaloo, A.R.; Ahmad, S.H. (1988) Behavior of normal and high-strength concrete under combined compression-shear loading. ACI Mater J. 85[6], 551-559.

Bentz, E.C.; Vecchio, F.J.; Collins, M.R. (2006) Simplified modified compression field theory for calculating shear strength of reinforced concrete elements. ACI Struct J. 103[4], 614-624.

Marcantonio, P.R.; Ozbolt, J.; Petrangeli, M. (2015) Rational approach to prediction of shear capacity of RC beam-column elements. ASCE J Struct Eng. 141[2] https://doi.org/10.1061/(ASCE)ST.1943-541X.0001037

Bresler, B.; Pister, K.S. (1958) Strength of concrete under combined stresses. ACI Journal Proceedings. ACI, US, 321-345.

Goode, C.D.; Helmy, M.A. (1967) The strength of concrete under combined shear and direct stress. Mag Concrete Res. 19[59], 105-112. https://doi.org/10.1680/macr.1967.19.59.105

Leon, A. (1935) Ueber die scherfestigkeit des betons. Beton und Eisen. 34[8], 130-135.

Le, F.; Dong, Y.; Zhang, L. Kang, G. (1996) Behavior of concrete under combined compression-shear loading. Journal of Fuzhou University (Natural Science). 24[S1], 30-35.

Yu, M.; Liu, F. (1988) Twin shear stress three parameter criterion and its corner model. China Civil Engineering Journal. 2[3], 90-95.

Li, J. (1997) Behavior of high-strength concrete under combined compression and shear loading. China Civil Engineering Journal. 30[3)], 74-80.

Ottosen, N.S. (1977) A failure criterion for concrete. ASCE Engineering Mechanics Division. 103[4], 527-535.

Folino, P.; Xargay, H. (2014) Recycled aggregate concrete–mechanical behavior under uniaxial and triaxial compression. Constr Build Mater. 56, 21-31. https://doi.org/10.1016/j.conbuildmat.2014.01.073

He, Z; Cao, W.; Zhang, J.; Wang, L. (2015) Multiaxial mechanical properties of plain recycled aggregate concrete. Mag Concrete Res. 67[8], 401-413. https://doi.org/10.1680/macr.14.00262

He, Z; Liu, G.; Cao, W.; Zhou, C.; Zhang, J. (2015) Strength criterion of plain recycled aggregate concrete under biaxial compression. Comput Concrete, 16[2], 209-222. https://doi.org/10.12989/cac.2015.16.2.209

GB/T 14685 (2011) Pebble and crushed stone for construction. Chinese National Standard.

GB/T 25177 (2010) Recycled coarse aggregate for concrete. Chinese National Standard.

JGJ 52 (2006) Standard for technical requirements and test method of sand and crushed stone (or gravel) for ordinary concrete. Chinese Industry Standard.

Abbas, A.; Fathifazl, G.; Fournier, B.; Isgor, O.B.; Zavadil, R.; Razaqpur, A.G.; Foo, S. (2009) Quantification of the residual mortar content in recycled concrete aggregates by image analysis. Mater Charact. 60[7], 716-728. https://doi.org/10.1016/j.matchar.2009.01.010

Fathifazl, G.; Abbas, A.; Razaqpur, A.G.; Isgor, O.B. (2009) New mixture proportioning method for concrete made with coarse recycled concrete aggregate. ASCE J Mater Civil Eng. 21[10], 601-611. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:10(601)

Knaack, A.M.; Kurama, Y.C. (2011) Design of normal strength concrete mixtures with recycled concrete aggregates. ASCE In Structures Congress. Las Vegas, United States, 3068-3079.

Surya, M.; Rao, V.V.L.K.; Lakshmy, P. (2015) Mechanical, durability, and time-dependent properties of recycled aggregate concrete with fly ash. ACI Mater J. 112[5], 653-661. https://doi.org/10.14359/51687853

GB/T 50152 (2012) Standard for test method of concrete structures. Chinese National Standard.

Guo, Z. (1997) Strength and deformation of concrete: Experimental basis and constitutive model. Beijing, China.

Kupfer, H.; Hilsdorf, H.K.; Rusch, H. (1969) Behavior of concrete under biaxial stresses. ACI In ACI Journal proceedings. US, 656-666.

GB/T 50081 (2002) Standard for test method of mechanical properties on ordinary concrete. Chinese National Standard.

Swamy, R.; Qureshi, S. (1974) An ultimate shear strength theory for reinforced concrete T-beams without web reinforcement. Mater. Construcc. 7[3], 181-189. https://doi.org/10.1007/BF02473833

Gao, D.; Liu, J.; Li, Z. (1994) Theoretical model on shear strength of reinforced fiber concrete beams. Engineering Mechanics. 11[2], 130-137.

Luo, L.; Wang, Q. (2013) Shear strength formula for reinforced concrete beams without web reinforcements against size effect. Applied Mathematics and Mechanics. 34[6], 606-619.

Zhang, L.; Zhang, X.; Yan, G. (2007) Experimental research on the shearing capacity of recycled concrete beams without stirrups. Industrial Construction. 37[9], 57-61.

Fathifazl, G.; Abbas, A.; Razaqpur, A.G.; Foo, S. (2009) Shear strength of reinforced recycled concrete beams without stirrups. Mater & Struct. 61[7], 477-490.

Ni, T.; Sun, W.; Guo, Z. (2010) Experimental study on shear behavior of recycled concrete beams without stirrup. Sichuan Building Science, 36[1], 5-7.

GB/T 50010 (2010) Code for design of concrete structures. Chinese National Standard.

NP EN 1992-1-1 Eurocode 2 (2010) Design of concrete structures-Part 1: general rules and rules for buildings. British Standards Institution.

fib (2013) fib Model Code for Concrete Structures 2010. Ernst & Sohn GmbH & Co. KG, Germany.

ACI 318-11 (2011) Building code requirements for structural concrete and commentary. American Concrete Institute, USA.

Publicado

2018-09-30

Cómo citar

Liu, K., Yan, J., & Zou, C. (2018). Comportamiento del hormigón con árido reciclado bajo esfuerzos combinados de compresión y cizallamiento. Materiales De Construcción, 68(331), e162. https://doi.org/10.3989/mc.2018.06217

Número

Sección

Artículos