Efectos del diseño y la construcción sobre la huella de carbono en columnas de hormigón armado para edificios residenciales
DOI:
https://doi.org/10.3989/mc.2019.09918Palabras clave:
Cemento Portland, Hormigón, Refuerzo metálico, Propiedades mecánicas, ModelizaciónResumen
La construcción de elementos estructurales requiere materiales de alto rendimiento. Las decisiones sobre la geometría y materiales se toman durante las fases de diseño y ejecución. Este estudio analiza y evalúa factores relevantes para columnas de hormigón armado en edificios residenciales. El trabajo identifica y resalta los aspectos más sensibles en el diseño de columnas: geometría, tipo de cemento y rendimiento de resistencia del concreto. El uso de hormigón C-40 mezclado con CEM-II demostró reducir costes (hasta 17.83%) y emisiones (hasta 13.59%). La combinación ideal de barras de refuerzo y concreto está entre 1.47 y 1.73: este es el porcentaje de la relación entre área de barras de refuerzo y área de la sección de hormigón. Los medios utilizados durante la fase de ejecución afectan la viabilidad de optimizar los recursos. La ubicación del edificio tiene un impacto menor, la zona eólica ejerce más influencia que la altitud topográfica.
Descargas
Citas
Galán-Marín, C.; Rivera-Gómez, C.; García-Martínez, A. (2015) Embodied energy of conventional load-bearing walls versus natural stabilized earth blocks. Energy Build. 97, 146-154. https://doi.org/10.1016/j.enbuild.2015.03.054
Park, H.; Kwon B.; Shin Y.; Kim Y.; Hong T.; Choi S. (2013) Cost and CO2 Emission Optimization of Steel Reinforced Concrete Columns in High-Rise Buildings. Energies 6, 5609-5624. https://doi.org/10.3390/en6115609
Ferreiro-Cabello, J.; Fraile-Garcia, E.; Martinez de Pison Ascacibar E.; Martinez de Pison Ascacibar, F. J. (2016) Minimizing greenhouse gas emissions and costs for structures with flat slabs. J. Clean. Prod. 137, 922-930. https://doi.org/10.1016/j.jclepro.2016.07.153
Kripka, M.; Medeiros, G. F.; Fraga, J. L. T.; Marosin, P. R. (2014) Minimizing the environmental impact of R-C structural elements. Eng. Optim. 727-730. https://www. researchgate.net/publication/265597500_Minimizing_the_ environmental_impact_of_R-C_structural_elements https://doi.org/10.1201/b17488-129
Guardigli, L. (2014) Comparing the environmental impact of reinforced concrete and wooden structures. Eco-Efficient Constr. Build. Mater. 49, pp. 407-433. https://doi.org/10.1533/9780857097729.3.407
Xiao, J.; Wang, C.; Ding, T.; Akbarnezhad, A. (2018) A recycled aggregate concrete high-rise building: Structural performance and embodied carbon footprint. J. Clean. Prod. 199, 868-881. https://doi.org/10.1016/j.jclepro.2018.07.210
Zahra S.; Moussavi Nadoushani, A. A. (2015) Effects of structural system on the life cycle carbon footprint of buildings. Energy Build. 1, 337-346. https://doi.org/10.1016/j.enbuild.2015.05.044
Griffin, C. T.; Reed, B.; Hsu, S.; Cruz, P. J. S. (2010) Comparing the embodied energy of structural systems in buildings. Struct. Archit. 1367-1373. https://doi.org/10.1201/b10428-182
Martí, J. V.; García-Segura, T.; Yepes, V. (2016) Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. J. Clean. Prod. 120, 231-240. https://doi.org/10.1016/j.jclepro.2016.02.024
Fraile-Garcia, E.; Ferreiro-Cabello, J.; Martinez-Camara, E.; Jimenez-Macias, E. (2016) Optimization based on life cycle analysis for reinforced concrete structures with one-way slabs. Eng. Struct. 109, 126-138. https://doi.org/10.1016/j.engstruct.2015.12.001
Miller, S. A.; Horvath, A.; Monteiro, P. J. M.; Ostertag, C. P. (2015) Greenhouse gas emissions from concrete can be reduced by using mix proportions, geometric aspects, and age as design factors. Environ. Res. Lett. 10, 114017. https://doi.org/10.1088/1748-9326/10/11/114017
Peng, W.; Sui Pheng, L. (2011) Managing the Embodied Carbon of Precast Concrete Columns. J. Mater. Civ. Eng. 23, 1192-1199. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000287
Hong, W.-K.; Park, S.-C.; Jeong, S.-Y.; Lim, G.-T.; Kim, J.-T. (2012) Evaluation of the Energy Efficiencies of Pre-cast Composite Columns. Indoor Built Environ. 21, 176-183. https://doi.org/10.1177/1420326X11420126
Wu, P.; Pienaar, J.; O'Brien, D. (2013) Developing a lean benchmarking process to monitor the carbon efficiency in precast concrete factories-a case study in Singapore. Coll. Publ. 8, 133-152. https://doi.org/10.3992/jgb.8.2.133
Wu, P. (2014) Monitoring carbon emissions in precast concrete installation through lean production - A case study in Singapore. J. Green Build. 9, 191-211. https://doi.org/10.3992/1943-4618-9.4.191
Oh, B. K.; Park, J. S.; Choi, S. W.; Park, H. S. (2016) Design model for analysis of relationships among CO2 emissions, cost, and structural parameters in green building construction with composite columns. Energy Build. 118, 301-315. https://doi.org/10.1016/j.enbuild.2016.03.015
Choi, S. W.; Oh, B. K.; Park, J. S.; Park, H. S. (2016) Sustainable design model to reduce environmental impact of building construction with composite structures. J. Clean. Prod. 137, 823-832. https://doi.org/10.1016/j.jclepro.2016.07.174
Kripka, M.; de Medeiros, G. F. (2012) Cross-Sectional Optimization of Reinforced Concrete Columns Considering both Economical and Environmental Costs. Appl. Mech. Mater. 193-194, 1086-1089. https://doi.org/10.4028/www.scientific.net/AMM.193-194.1086
Heede, P.; Van den, Maes, M.; Gruyaert, E.; Belie, N. De. (2012) Full probabilistic service life prediction and life cycle assessment of concrete with fly ash and blast-furnace slag in a submerged marine environment: a parameter study. Int. J. Environ. Sustain. Dev. 11, 32. https://doi.org/10.1504/IJESD.2012.049141
García-Segura, T.; Yepes, V.; Alcalá, J. (2014) Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. Int. J. Life Cycle Assess. 19, 3-12. https://doi.org/10.1007/s11367-013-0614-0
Yang, K.-H.; Seo, E.-A.; Choi, D.-U. (2014) Effect of fly ash on lifecycle CO2 assessment of concrete structure. Appl. Mech. Mater. 692. https://doi.org/10.4028/www.scientific.net/AMM.692.475. https://doi.org/10.4028/www.scientific.net/AMM.692.475
Magudeaswaran, P.; Eswaramoorthi, P. (2015) Use of industrial waste materials in sustainable green high-performance reinforced concrete short columns. Int. J. Earth Sci. Eng. 8.
Albitar, M.; Mohamed Ali, M. S.; Visintin, P. (2017) Experimental study on fly ash and lead smelter slag-based geopolymer concrete columns. Constr. Build. Mater. 141, 104-112. https://doi.org/10.1016/j.conbuildmat.2017.03.014
Zhang, Y. F.; Zhao, J. H.; Cai, C. S. (2012) Seismic behavior of ring beam joints between concrete-filled twin steel tubes columns and reinforced concrete beams. Eng. Struct. 39, 1-10. https://doi.org/10.1016/j.engstruct.2012.01.014
Hirade, T.; Odajima, N.; Kimura, H.; Kaneko, H.; Yonezawa, T. (2014) Structural performance of the steel-bar-reinforced concrete-filled circular thin steel tubular columns using high slag cement. J. Struct. Constr. Eng. (Transactions AIJ) 79, 651-660. https://doi.org/10.3130/aijs.79.651
AENOR GlobalEPD Program. Environmental Product Declaration Long steel laminate construction unalloyed hot oven from: corrugated bars. 1-12 (2014).
AENOR GlobalEPD Program. Environmental Product Declaration Cement CEM I. 1-12 (2014).
AENOR GlobalEPD Program. Environmental Product Declaration Cement CEM II. 1-12 (2014).
AENOR GlobalEPD Program. Environmental Product Declaration Cement CEM III. 1-12 (2014).
AENOR GlobalEPD Program. Environmental Product Declaration Cement CEM IV. 1-12 (2014).
AENOR GlobalEPD Program. Environmental Product Declaration Cement CEM V. 1-12 (2014).
Fraile-Garcia, E.; Ferreiro-Cabello, J.; Martinez-Camara, E.; Jimenez-Macias, E. (2015) Adaptation of methodology to select structural alternatives of one-way slab in residential building to the guidelines of the European Committee for Standardization (CEN/TC 350). Environ. Impact Assess. Rev. 55, 144-155. https://doi.org/10.1016/j.eiar.2015.08.004
Yang, K. H.; Jung, Y. B.; Cho, M. S.; Tae, S. H. (2015) Effect of Supplementary Cementitious Materials on Reduction of CO2 Emissions From Concrete. Handb. Low Carbon Concr. 103, 774-783. https://doi.org/10.1016/j.jclepro.2014.03.018
Park, H. S.; Lee, H.; Kim, Y.; Hong, T.; Choi, S. W. (2014) Evaluation of the influence of design factors on the CO2 emissions and costs of reinforced concrete columns. Energy Build. 82, 378-384. https://doi.org/10.1016/j.enbuild.2014.07.038
Jeong, J.; Taehoon H.; Changyoon J.; Jimin K.; Minhyun L.; Kwangbok J.; Seunghwan L. (2017) An integrated evaluation of productivity, cost and CO2 emission between prefabricated and conventional columns. J. Clean. Prod. 142, 2393-2406. https://doi.org/10.1016/j.jclepro.2016.11.035
Li, H.; Deng, Q.; Xia, B.; Zhang, J.; Skitmore, M. (2019) Assessing the life cycle CO2 emissions of reinforced concrete structures: Four cases from China. J. Clean. Prod. 210, 1496-1506. https://doi.org/10.1016/j.jclepro.2018.11.102
Plataforma Tecnologica Española del Hormigón. Hormigón: Un Material Para Aumentar la Sotenibilidad de la Construcción. PTEH (2014). Available at: https://www.ieca.es/publicaciones/. (Accessed: 1st December 2017).
CYPE Ingenieros S.A. CYPE Ingenieros S.A. Software for Architecture, Engineering and Construction. Spain, 2016. (2017).
Ministry of Public Works Spain. Code on Structural Concrete (Spanish abbreviation - EHE-08). (2008).
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2019 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.