Comportamientos de daños de hormigón y modelos de predicción bajo el efecto conjunto del ataque hielo-deshielo y la radiación ultravioleta
DOI:
https://doi.org/10.3989/mc.2019.12018Palabras clave:
Hormigón, Hielo/deshielo, Microscopía Electrónica de Barrido (MEB), Durabilidad, Resistencia a la flexiónResumen
Se analiza la relación, en hormigones, del efecto conjunto del ataque hielo-deshielo y la radiación ultravioleta en función de sus parámetros de Pérdida de Masa (PM), Módulo Dinámico de Elasticidad (MDRE) y Resistencia a la Flexión, a partir del tratamiento estadístico de los resultados (ANOVA). Se ha constatado que la proporción agua/cemento (o aglomerante) (w/c) influyó significativamente sobre la Pérdida de Masa (PM), MDRE y Resistencia a la Flexión. La radiación UV, tuvo un efecto significativo sobre PM pero apenas en los otros dos parámetros analizados. La evolución del deterioro en el hormigón se evaluó estudiando su microestructura a partir de Microscopía Electrónica de Barrido de Electrones Secundarios (MEB-SSE). A partir de esta investigación se propuso un modelo predictivo del grado de deterioro del hormigón, concluyéndose que los datos de predicción tenían una buena relación con los datos experimentales encontrados.
Descargas
Citas
Tang, S.W.; Yao, Y.; Andrade, C.; Li, Z.J. (2015) Recent durability studies on concrete structure. Cem. Concr. Res. 78, 143-154. https://doi.org/10.1016/j.cemconres.2015.05.021
Zhang, X.H.; Wang, L.; Zhang, J.R. (2017) Mechanical behavior and chloride penetration of high strength concrete under freeze-thaw attack. Cold Reg. Sci. Tech. 142, 17-24. https://doi.org/10.1016/j.coldregions.2017.07.004
Hanjari, K.Z.; Utgenannt, P.; Lundgren, K. (2011) Experimental study of the material and bond properties of frost-damaged concrete. Cem. Concr. Res. 41 [3], 244-254. https://doi.org/10.1016/j.cemconres.2010.11.007
Ebrahimi, K.; Daiezadeh, M.J.; Zakertabrizi, M.; Zahmatkesh, F.; Korayem, A.H. (2018) A review of the impact of micro- and nanoparticles on freeze-thaw durability of hardened concrete: Mechanism perspective. Constr. Build. Mater. 186, 1105-1113. https://doi.org/10.1016/j.conbuildmat.2018.08.029
Litvan, G.G. (1972) Phase transitions of adsorbates: IV, mechanism of frost action in hardened cement paste. J. Am. Ceram. Soc. 55 [1], 38-42. https://doi.org/10.1111/j.1151-2916.1972.tb13393.x
Collins. A. (1944) The destruction of concrete by frost. J. Inst. Civ. Eng. 23 [1], 29-41. https://doi.org/10.1680/ijoti.1944.14086
Qin, X.C.; Meng, S.P.; Cao, D.F.; Tu, Y.M.; Sabourova, N.; Grip, N.; Ohlsson, U.; Blanksvärd, T.; Sas, G.; Elfgren, L. (2016) Evaluation of freeze-thaw damage on concrete material and prestressed concrete specimens. Constr. Build. Mater. 125, 892-904. https://doi.org/10.1016/j.conbuildmat.2016.08.098
Tuyan, M.; Mardani-Aghabaglou, A.; Ramyar, K. (2014) Freeze-thaw resistance, mechanical and transport properties of self-consolidating concrete incorporating coarse recycled concrete aggregate. Mater. Des. 53, 983-991. https://doi.org/10.1016/j.matdes.2013.07.100
Sun, Z.H.; Scherer, G.W. (2010) Effect of air voids on salt scaling and internal freezing. Cem. Concr. Res. 40 [2], 260-270. https://doi.org/10.1016/j.cemconres.2009.09.027
Cavdar, A. (2014) Investigation of freeze-thaw effects on mechanical properties of fiber reinforced cement mortars. Compos. Pt. B-Eng. 58, 463-472. https://doi.org/10.1016/j.compositesb.2013.11.013
Li, Y.; Wang, R.J.; Li, S.Y. Zhao, Y; Qin, Y. (2018) Resistance of recycled aggregate concrete containing low- and high-volume fly ash against the combined action of freeze-thaw cycles and sulfate attack. Constr. Build. Mater. 166, 23-34. https://doi.org/10.1016/j.conbuildmat.2018.01.084
Wang, D.Z.; Zhou, X.M.; Meng, Y.F.; Chen, Z. (2017) Durability of concrete containing fly ash and silica fume against combined freezing-thawing and sulfate attack. Constr. Build. Mater. 147, 398-406. https://doi.org/10.1016/j.conbuildmat.2017.04.172
Yang, H.Q.; Shen, X.M.; Rao, M.J.; Li, X.; Wang, X.D. (2015) Influence of alternation of sulfate attack and freeze-thaw on microstructure of concrete. Adv. Mater. Sci. Eng. 1, 1-7. https://doi.org/10.1155/2015/859069
Wang, J.B.; Niu, D.T. (2016) Influence of freeze-thaw cycles and sulfate corrosion resistance on shotcrete with and without steel fiber. Constr. Build. Mater. 122, 628-636. https://doi.org/10.1016/j.conbuildmat.2016.06.100
Piasta, W.; Marczewska, J.; Jaworska, M. (2015) Durability of air entrained cement mortars under combined sulphate and freeze-thaw attack. Procedia Eng. 108, 55-62. https://doi.org/10.1016/j.proeng.2015.06.119
Tian, J.; Wang, W.W.; Du, Y.F. (2016) Damage behaviors of self-compacting concrete and prediction model under coupling effect of salt freeze-thaw and flexural load. Constr. Build. Mater. 119, 241-250. https://doi.org/10.1016/j.conbuildmat.2016.05.073
Kosior-Kazberuk, M.; Berkowski, P. (2017) Surface scaling resistance of concrete subjected to freeze-thaw cycles and sustained load. Procedia Eng. 172, 513-520. https://doi.org/10.1016/j.proeng.2017.02.060
Diao, B.; Sun, Y.; Cheng, S.H.; Eng., P.; Ye, Y.H. (2011) Effects of mixed corrosion, freeze-thaw cycles, and persistent loads on behavior of reinforced concrete beams. J. Cold Reg. Eng. 25 [1], 37-52. https://doi.org/10.1061/(ASCE)CR.1943-5495.0000019
Enfedaque, A.; Romero, H.L.; Gálvez, J.C. (2014) Fracture energy evolution of two concretes resistant to the action of freeze-thaw cycles. Mater. Constr. 64 [313], 60-71. https://doi.org/10.3989/mc.2014.00813
Lu, J.Z.; Zhu, K.F.; Tian, L.Z.; Guo, L. (2017) Dynamic compressive strength of concrete damaged by fatigue loading and freeze-thaw cycling. Constr. Build. Mater. 152, 847-855. https://doi.org/10.1016/j.conbuildmat.2017.07.046
Wang, Z.D.; Zeng, Q.; Wang, L.; Yao, Y.; Li, K.F. (2014) Corrosion of rebar in concrete under cyclic freeze-thaw and chloride salt action. Constr. Build. Mater. 53, 40-47. https://doi.org/10.1016/j.conbuildmat.2013.11.063
Jacobsen, S.; Marchand, J.; Boisvert, L. (1996) Effect of cracking and healing on chloride transport in OPC concrete. Cem. Concr. Res. 26 [6], 869-881. https://doi.org/10.1016/0008-8846(96)00072-5
Zhang, P.; Cong, Y.; Vogel, M.; Liu, Z.L.; Müller, H.S.; Zhu, Y.G.; Zhao, T.J. (2017) Steel reinforcement corrosion in concrete under combined actions: The role of freeze-thaw cycles, chloride ingress, and surface impregnation. Constr. Build. Mater. 148, 113-121. https://doi.org/10.1016/j.conbuildmat.2017.05.078
Kuosa, H. Ferreira, R.M.; Holt, E.; Leivo, M.; Vesikari, E. (2014) Effect of coupled deterioration by freeze-thaw, carbonation and chlorides on concrete service life. Cem. Concr. Compos. 47, 32-40. https://doi.org/10.1016/j.cemconcomp.2013.10.008
He, Z.; Tang, S.W.; Zhao, G.S.; Chen, E. (2016) Comparison of three and one dimensional attacks of freeze-thaw and carbonation for concrete samples. Constr. Build. Mater. 127, 596-606. https://doi.org/10.1016/j.conbuildmat.2016.09.069
Liu, F.; You, Z.P.; Yang, X.; Wang, H.N. (2018) Macro-micro degradation process of fly ash concrete under alternation of freeze-thaw cycles subjected to sulfate and carbonation. Constr. Build. Mater. 181, 369-380. https://doi.org/10.1016/j.conbuildmat.2018.06.037
Ge, X.; Ge, Y.; Du, Y. B.; Cai, X. P. (2017) Effect of low air pressure on mechanical properties and shrinkage of concrete. Mag. Concr. Res. 70 [18], 1-12. https://doi.org/10.1680/jmacr.17.00305
Güllü, H. (2015) On the viscous behavior of cement mixtures with clay, sand, lime and bottom ash for jet grouting. Constr. Build. Mater. 93, 891-910. https://doi.org/10.1016/j.conbuildmat.2015.05.072
Cui, W.; Huang, J.Y.; Song, H.F.; Xiao, M. (2017) Development of two new anti-washout grouting materials using multi-way ANOVA in conjunction with grey relational analysis. Constr. Build. Mater. 156, 184-198. https://doi.org/10.1016/j.conbuildmat.2017.08.126
Li, C.Z.; Jiang, L.H.; Xu, N.; Jiang S.B. (2018) Pore structure and permeability of concrete with high volume of limestone powder addition. Powder Technol. 338, 416-424. https://doi.org/10.1016/j.powtec.2018.07.054
Ma, H.X.; Yu, H.F.; Li, C.; Tan, Y.S.; Cao, W.T.; Da, Bo. (2018) Freeze-thaw damage to high-performance concrete with synthetic fibre and fly ash due to ethylene glycol deicer. Constr. Build. Mater. 187, 197-204. https://doi.org/10.1016/j.conbuildmat.2018.07.189
Wongpa, J.; Kiattikomol, K.; Jaturapitakkul, C.; Chindaprasirt, P. (2010) Compressive strength, modulus of elasticity, and water permeability of inorganic polymer concrete. Mater. Des. 31 [10], 4748-4754. https://doi.org/10.1016/j.matdes.2010.05.012
Jiang, L.; Niu, D.T.; Yuan, L.D.; Fei, Q.N. (2015) Durability of concrete under sulfate attack exposed to freeze-thaw cycles. Cold Reg. Sci. Tech. 112, 112-117. https://doi.org/10.1016/j.coldregions.2014.12.006
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2019 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.