Estudio de la influencia de los diferentes residuos de carbón como aluminosilicatos en las propiedades mecánicas y la microestructura de los cementos activados alcalinamente
DOI:
https://doi.org/10.3989/mc.2019.12618Palabras clave:
Cemento activado alcalinamente, Pasta de cemento, Microestructura, Propiedades mecânicas, Propiedades físicasResumen
Los residuos de minería de carbón causan serios problemas ambientales, no obstante, tienen potencial como material de construcción, destacándose los cementos activados alcalinamente. El efecto de los residuos de carbón sobre las propiedades mecánicas y el desarrollo microestructural de los cementos activados alcalinamente son objeto de este estudio. Para ello, se utilizaron las técnicas de DRX, SEM y FTIR. Se produjeron diferentes compuestos activados alcalinamente, utilizando NaOH + Na2SiO3 como activador alcalino y curado térmico (50 °C durante 24 h). Los resultados obtenidos a partir del lodo de carbón calcinado mostraron un excelente rendimiento mecánico, con una resistencia a la compresión superior a 60 MPa. Sin embargo, en el caso de los materiales obtenidos a partir de la ganga de carbón calcinada, fue necesaria la adición de metacaolín y cemento Portland para aumentar sus resistencias mecánicas. Asimismo, se evidenció la formación de gel N-A-S-H y la incorporación de iones de hierro en la matriz cementante. El ensayo de velocidad de pulso ultrasónica indicó la polimerización inicial durante el proceso de reacción. Gracias a este se ha comprobado que las diferentes características de los residuos influyen en las propiedades y comportamiento de los correspondientes materiales activados alcalinamente.
Descargas
Citas
Simate, G. S.; Ndlovu, S. (2014) Acid mine drainage: challenges and opportunities. J. Environ. Chem. Eng. 2 [3], 1785-1803. https://doi.org/10.1016/j.jece.2014.07.021
Kefeni, K. K.; Msagati, T.A.M.; Mamba, B.B. (2017) Acid mine drainage: prevention, treatment options, and resource recovery. J. Clean. Prod. 151, 475-493. https://doi.org/10.1016/j.jclepro.2017.03.082
Querol, X.; Izquierdo, M.; Monfort, E.; Alvarez, E.; Font, O.; Moreno, T.; Alastuey, A.; Zhuang, X.; Lu, W.; Wang, Y. (2008) Environmental characterization of burnt coal gangue banks at Yangquan, Shanxi Province, China. Int. J. Coal. Geol. 75 [2], 93-104. https://doi.org/10.1016/j.coal.2008.04.003
Gong, C.; Li, D.; Wang, X.; Li, Z. (2007) Activity and structure of calcined coal gangue. J. Wuhan University of Technol-mater. 22 [4], 749-753. https://doi.org/10.1007/s11595-006-4749-8
Cao, Z.; Cao, Y.; Dong, H.; Zhang, J.; Sun, C. (2016) Effect of calcination condition on the microstructure and pozzolanic activity of calcined coal gangue. Int. Miner. Process. 146, 23-28. https://doi.org/10.1016/j.minpro.2015.11.008
Cutruneo, C. M. N. L.; Oliveira, M. L.S.; Ward, C. R.; Hower, J. C.; de Brum, I. A.S.; Sampaio, C. H.; Kautzmann, R. M.; Taffarel, S. R.; Teixeira, E. C.; Silva, L. F. O. (2014) A mineralogical and geochemical study of three Brazilian coal cleaning rejects: Demonstration of electron beam applications. Int. J. Coal Geol. 130, 33-52. https://doi.org/10.1016/j.coal.2014.05.009
Cheng, Y.; Hongqiang, M.; Hongyu, C.; Jiaxin, W.; Jing, S.; Zonghui, L.; Mingkai, Y. (2018) Preparation and characterization of coal gangue geopolymers. Constr. Build. Mater. 187, 318-326. https://doi.org/10.1016/j.conbuildmat.2018.07.220
FrÌas, M.; La Villa, R. V.; Rojas, M. S.; Medina, C.; Juan ValdÈs, A. (2012) Scientific aspects of kaolinite based coal mining wastes in Pozzolan/Ca(OH)2 System. J. Am. Ceram. Soc. 95 [1], 386-391. https://doi.org/10.1111/j.1551-2916.2011.04985.x
Dong, Z.; Xia, J.; Fan, C.; Cao, J. (2015) Activity of calcined coal gangue fine aggregate and its effect on the mechanical behavior of cement mortar. Constr. Build. Mater. 100, 63-69. https://doi.org/10.1016/j.conbuildmat.2015.09.050
GarcÌa, R.; Vigil de La Villa, R.; FrÌas, M.; Rodriguez, O.; MartÌnez-RamÌrez, S.; Fern·ndez-Carrasco, L.; de Soto, I. S.; Villar-CociÒa, E. (2015) Mineralogical study of calcined coal waste in a pozzolan/Ca(OH)2 system. Appl. Clay Sci. 108, 45-54. https://doi.org/10.1016/j.clay.2015.02.014
Gao, Y.; Huang, H.; Tang, W.; Liu, X.; Yang, X.; Zhang, J. (2015) Preparation and characterization of a novel porous silicate material from coal gangue. Micropor. Mesopor. Mater. 217, 210-218. https://doi.org/10.1016/j.micromeso.2015.06.033
Frías, M.; Sanchez de Rojas, M. I.; García, R.; Juan Valdés, A.; Medina, C. (2012) Effect of activated coal mining wastes on the properties of blended cement. Cem. Concr. Compos. 34 [5], 678-683. https://doi.org/10.1016/j.cemconcomp.2012.02.006
Li, C.; Wan, J.; Sun, H.; Li, L. (2010) Investigation on the activation of coal gangue by a new compound method. J. Hazard Mater. 179 [1 3], 515-520. https://doi.org/10.1016/j.jhazmat.2010.03.033 PMid:20359819
Taha, Y.; Benzaazoua, M.; Hakkou, R.; Mansori, M. (2017) Coal mine wastes recycling for coal recovery and eco-friendly bricks production. Miner. Eng. 107, 123-138. https://doi.org/10.1016/j.mineng.2016.09.001
Zhou, C.; Liu, G.; Wu, S.; Lam, P. K. S. (2014) The environmental characteristics of usage of coal gangue in bricking- making: a case study at Huainan, China. Chemosphere. 95, 274-280. https://doi.org/10.1016/j.chemosphere.2013.09.004 PMid:24103437
Huang, G.; Ji, Y.; Li, J.; Hou, Z.; Dong, Z. (2018) Improving strength of calcinated coal gangue geopolymer mortars via increasing calcium content. Constr. Build. Mater. 166, 760-768. https://doi.org/10.1016/j.conbuildmat.2018.02.005
Geng, J.; Zhou, M.; Li, Y.; Chen, Y.; Han, Y.; Wan, S.; Zhou, X.; Hou, H. (2017) Comparison of red mud and coal gangue blended geopolymers synthesized through thermal activation and mechanical grinding preactivation. Constr. Build. Mater. 153, 185-192. https://doi.org/10.1016/j.conbuildmat.2017.07.045
Duan, Y.; Wang, P. (2008) Early hydration of the material of alkali-activated coal gangue. J. Mater. Sci. Eng. 4 [26], 511-515.
Shi, C.; Fern·ndez-JimÈnez, A.; Palomo, A. (2011) New cements for the 21st century: The pursuit of an alternative to Portland cement. Cem. Concr. Res. 41 [7], 750-763. https://doi.org/10.1016/j.cemconres.2011.03.016
Khale, D.; Chaudhary, R. (2007) Mechanism of geopolymerization and factors influencing its development: a review. J. Mater. Sci. 42 [3], 729-746. https://doi.org/10.1007/s10853-006-0401-4
RovnanÌk, P. (2010) Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Constr. Build. Mater. 24 [7], 1176-1183. https://doi.org/10.1016/j.conbuildmat.2009.12.023
Aydin, S.; Baradan, B. (2014) Effect of activator type and content on properties of alkali-activated slag mortars. Compos. Part B: Eng. 57, 166-172. https://doi.org/10.1016/j.compositesb.2013.10.001
Samson, G.; Cyr, M.; Gao, X. (2017) Formulation and characterization of blended alkali-activated materials based on flash-calcined metakaolin, fly ash and GGBS. Constr. Build. Mater. 144, 50-64. https://doi.org/10.1016/j.conbuildmat.2017.03.160
Bignozzi, M. C.; Manzi, S.; Lancellotti, I.; Kamseu, E.; Barbieri, L.; Leonelli, C. (2013) Mix-design and characterization of alkali-activated materials based on metakaolin and ladle slag. Appl. Clay Sci. 73, 78-85. https://doi.org/10.1016/j.clay.2012.09.015
Cheng, H.; Lin, K-L.; Cui, R.; Hwang, C-L.; Cheng, T-W.; Chang, Y-M. (2015) Effect of solid-to-liquid ratios on the properties of waste catalyst metakaolin-based geopolymers. Constr. Build. Mater. 88, 74-83. https://doi.org/10.1016/j.conbuildmat.2015.01.005
Slaty, F.; Khoury, H.; Rahier, H.; Wastiels, J. (2015) Durability of alkali-activated cement produced from kaolinitic clay. Appl. Clay Sci. 104, 229-237. https://doi.org/10.1016/j.clay.2014.11.037
Saavedra, W. G. V.; ¬ngulo, D. E.; de GutiÈrrez, R. M. (2016) Fly Ash Slag Geopolymer Concrete: Resistance to Sodium and Magnesium Sulfate Attack. J. Mater. Civ. Eng. 28 [12], 04016148-04016157. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001618
Dzunuzovic, N.; Komljenovic, M.; Nikolic, V.; Ivanovic, T. (2017) External sulfate attack on alkali-activated fly ash-blast furnace slag composite. Constr. Build. Mater. 157, 737-747. https://doi.org/10.1016/j.conbuildmat.2017.09.159
Zhang, J.; Shi, C.; Zhang, Z.; Ou, Z. (2017) Durability of alkali-activated materials in aggressive environments: A review on recent studies. Constr. Build. Mater. 152, 598-613. https://doi.org/10.1016/j.conbuildmat.2017.07.027
Komnitsas, K.; Zaharaki, D. (2007) Geopolymerisation: A review and prospects for the minerals industry. Miner. Eng. 20 [14], 1261-1277. https://doi.org/10.1016/j.mineng.2007.07.011
Fernández-JimÈénez, A.; Palomo, A. (2005) Composition and microstructure of alkali-activated fly ash binder: Effect of the activator. Cem. Concr. Res. 35 [10], 1984-1992. https://doi.org/10.1016/j.cemconres.2005.03.003
Ruiz-Santaquiteria, C.; Skibsted, J.; Fernández-Jiménez, A.; Palomo, A. (2012) Alkaline solution/binder ratio as a determining factor in the alkaline activation of aluminosilicates. Cem. Concr. Res. 42 [9], 1242-1251. https://doi.org/10.1016/j.cemconres.2012.05.019
Granizo, N.; Palomo, A.; Fernandez-JimÈnez, A. (2014) Effect of temperature and alkaline concentration on metakaolin leaching kinetics. Ceram. Int. 40 [7], 8975-8985. https://doi.org/10.1016/j.ceramint.2014.02.071
ABNT NBR 16697: 2018, Portland cement. Requirements
ABNT NBR 8522: 2017, Concrete. Determination of static modulus of elasticity and deformation by compression.
Criado, M.; Fern·ndez-JimÈnez, A.; Palomo, A. (2007) Alkali activation of fly ash: Effect of the SiO2/Na2O ratio. Micropor. Mesopor. Mater. 106 [1-3], 180-191. https://doi.org/10.1016/j.micromeso.2007.02.055
ABNT NBR 7214: 2015, Standard sand for cement tests. Specification.
ABNT NBR 15630: 2009, Mortars applied on walls and ceilings. Determination of elasticity modulus by the ultrasonic wave propagation
Santos, F. I. G.; Rocha, J. C.; Cheriaf, M. (2007) Influence of bottom ash replaced natural aggregate and air-entraining agent in moisture transfer mechanisms in mortars. Revista MatÈria. 12 [2], 253-268. https://doi.org/10.1590/S1517-70762007000200003
ABNT NBR 9778: 2009, Hardened mortar and concrete. Determination of absorption, voids and specific gravity.
Dimas, D.; Giannopoulou, I.; Panias, D. (2009) Polymerization in sodium silicate solutions: a fundamental process in geopolymerization technology. J. Mater. Sci. 44 [14], 3719-3730. https://doi.org/10.1007/s10853-009-3497-5
Hoyos-Montilla, A.A.; Arias-Jaramillo, Y.P.; TobÛn, J.I. (2018) Evaluation of cements obtained by alkali-activated coal ash with NaOH cured at low temperatures. Mater. Construcc. 68 (332), 170, 2018. https://doi.org/10.3989/mc.2018.10117
Fern·ndez-JimÈnez, A.; Palomo, A.; Vazquez, T.; Vallepu, R.; Terai, T.; Ikeda, K. (2008) Alkaline activation of blends of metakaolin and calcium aluminate. J. Am. Ceram. Soc. 91 [4], 1231-1236. https://doi.org/10.1111/j.1551-2916.2007.02002.x
Fernández-Jiménez, A.; Palomo, A. (2005) Mid-infrared spectroscopic studies of alkali-activated fly ash structure. Microp. Mesop. Mater. 83, 207-214. https://doi.org/10.1016/j.micromeso.2005.05.057
Ismail, I.; Bernal, S. A.; Provis, J. L.; San Nicolas, R.; Hamdan, S.; Van Deventer, J. S. J. (2014) Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash. Cem. Concr. Compos. 45, 125-135. https://doi.org/10.1016/j.cemconcomp.2013.09.006
Reyes-Bozo, L.; Escudey, M.; Vyhmeister, E.; Higueras, P.; Godoy-Faúndez, A.; Salazar, J. L.; ValdÈs-Gonz·lez, H.; Wolf-Sep˙lveda, G.; Herrera-Urbina, R. (2015) Adsorption of biosolids and their main components on chalcopyrite, molybdenite and pyrite: Zeta potential and FTIR spectroscopy studies. Miner. Eng. 78, 128-135. https://doi.org/10.1016/j.mineng.2015.04.021
White, W. B.; Roy, R. (1964) Infrared spectra-crystal structure correlations: ii. Comparison of simple polymorphic minerals. The Am. Mineral. 49 [11-12], 1670-1687.
Yankwa Djobo, J. N.; Elimbi, A.; Tchakout, H. K.; Kumar, S. (2016) Mechanical activation of volcanic ash for geopolymer synthesis: effect on reaction kinetics, gel characteristics, physical and mechanical properties. Res. Adv. 6 [45], 39106-39117. https://doi.org/10.1039/C6RA03667H
Davidovits, F.; Davidovits, J.; Davidovits, M. (2013) Geopolymer Cement of The Calcium Ferro-Aluminosilicate Polymer Type And Production Process EP 2632870 A1.
Wang, C.C.; Wang, H.Y.; Chen, B.T.; Peng, Y.C. (2017) Study on the engineering properties and prediction models of an alkali-activated mortar material containing recycled waste glass. Constr. Build. Mater. 132, 130-141. https://doi.org/10.1016/j.conbuildmat.2016.11.103
Mangat, P. S.; Ojedokun, O. O. (2018) Influence of curing on pore properties and strength of alkali activated mortars. Constr. Build. Mater. 188, 337-348. https://doi.org/10.1016/j.conbuildmat.2018.07.180
Hasselman, D. P. H. (1969) Griffith flaws and the effect of porosity on tensile strength of brittle ceramics. J. Am. Ceram. Soc. 52, 457. https://doi.org/10.1111/j.1151-2916.1969.tb11982.x
Chen, X.; Wu, S.; Zhou, J. (2013) Influence of porosity on compressive and tensile strength of cement mortar. Constr. Build. Mater. 40, 869-874. https://doi.org/10.1016/j.conbuildmat.2012.11.072
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2019 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.