Evaluación de las propiedades mecánicas de morteros fibrosos y bloques de suelo estabilizado y entrecruzado (ISSB) para viviendas de mampostería de bajo costo

Autores/as

DOI:

https://doi.org/10.3989/mc.2019.13418

Palabras clave:

Ladrillo, Mortero, Propiedades mecánicas, Refuerzo de fibras, Análisis de imágenes

Resumen


Los muros de bloques de suelo estabilizados entrelazados (ISSB) se han utilizado en casas de bajo costo en todo el mundo, especialmente en países en desarrollo. Es conocido que estos muros presentaban debilidad frente a cargas laterales (por ejemplo, viento o terremoto) sin consideraciones especiales. En este trabajo se han evaluado las propiedades mecánicas (resistencia a compresión, módulo elástico, absorción de energía pre/post agrietamiento e índice de tenacidad) de ISSB con tres configuraciones y siete combinaciones de cubos de morteros liso y fibrosos. Para los morteros fibrosos se utilizó fibra de sisal y paja de arroz en proporciones del 2% y 5% con respecto a la masa de cemento. Se desarrollaron ecuaciones empíricas para predecir el módulo elástico. Los resultados mostraron que los ISSB poseen una fortaleza suficiente para poder ser utilizados en obras de albañilería. La carga de falla y el índice de tenacidad de las muestras de fibra de sisal al 2% se mejoraron en un 10% y un 16%, respectivamente, mientras que se encontró una mejora de 2.21 veces en el módulo de elasticidad. Por lo tanto, un 2% de fibra de sisal en yeso (es decir, revestimiento reforzado) probablemente mejoraría la resistencia lateral de las paredes.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Lee, Y.H.; Shek, P.N.; Mohammad, S. (2017) Structural performance of reinforced inte rlocking blocks column. Constr. Build. Mater. 142, 469-481. https://doi.org/10.1016/j.conbuildmat.2017.03.110

Bosiljkov, V.Z.; Totoev, Y.Z.; Nichols, J.M. (2005) Shear modulus and stiffness of brickwork masonry: An experimental perspective. Struct. Eng. and Mech. 20 [1], 21-43. https://doi.org/10.12989/sem.2005.20.1.021

Jaafar, M.S.; Thanoon, W.A.; Najm, A.M.S.; Abdulkadir, M.R.; Ali, A.A.A. (2006) Strength correlation between individual block, prism and basic wall panel for load bearing interlocking mortarless hollow block masonry. Constr. Build. Mater. 20 [7], 492-498. https://doi.org/10.1016/j.conbuildmat.2005.01.046

Juarez, C.; Guevara B.; Valdez, P.; Durán-Herrera, A. (2010) Mechanical properties of natural fibers reinforced sustainable masonry. Constr. Build. Mater. 24, 1536-1541. https://doi.org/10.1016/j.conbuildmat.2010.02.007

Martínez, M.; Atamturktur, S. (2019) Experimental and numerical evaluation of reinforced dry-stacked concrete masonry walls. J. Build. Eng.22, 181-191. https://doi.org/10.1016/j.jobe.2018.12.007

Anand, K.B.; Ramamurthy, K. (2000) Development and performance evaluation of interlocking-block masonry. J. Architect. Eng. 6 [2], 45-50. https://doi.org/10.1061/(ASCE)1076-0431(2000)6:2(45)

Kintingu, S.H. (2009). Design of interlocking bricks for enhanced wall construction, flexibility, alignment accuracy and load bearing. Doctoral Thesis, Univerisy of Warwick, UK.

Fundi, S.I.; Kaluli, J.W.; Kinuthia, J. (2018) Performance of interlocking laterite soil block walls under static loading. Constr. Build. Mater. 171, 75-82. https://doi.org/10.1016/j.conbuildmat.2018.03.115

Dehghan, S.M.; Najafgholipour, M.A.; Baneshi, V.; Rowshanzamir, M. (2018) Mechanical and bond properties of solid clay brick masonry with different sand grading. Constr. Build. Mater. 174, 1-10. https://doi.org/10.1016/j.conbuildmat.2018.04.042

Chewe Ngapeya, G.G.; Waldmann, D.; Scholzen, F. (2018) Impact of the height imperfections of masonry blocks on the load bearing capacity of dry-stack masonry walls. Constr. Build. Mater. 165, 898-913. https://doi.org/10.1016/j.conbuildmat.2017.12.183

Gupta, R. (2014) Characterizing material properties of cement-stabilized rammed earth to construct sustainable insulated walls. Case Stud. Constr. Mater. 1, 60-68. https://doi.org/10.1016/j.cscm.2014.04.002

Tripura, D.D.; Singh, K.D. (2018) Mechanical behaviour of rammed earth column: A comparison between unreinforced, steel and bamboo reinforced columns. Mater. Construcc. 68 [332]. https://doi.org/10.3989/mc.2018.11517

Pereira, M.; Fujiyama, R.; Darwish, F.; Alves, G. (2015) On the Strengthening of Cement Mortar by Natural Fibers. Am. J. Mater. 18 [1], 177-183. https://doi.org/10.1590/1516-1439.305314

Savastano, H.; Warden, P.G.; Coutts, R.S.P. (2003) Potential of alternative fibre cements as building materials for developing areas. Cem. Concr. Comp. 25 [6], 585-592. https://doi.org/10.1016/S0958-9465(02)00071-9

Savastano, H.; Santos, S.F.; Radonjic, M.; Soboyejo, W.O. (2009) Fracture and fatigue of natural fiber-reinforced cementitious composites. Cem. Concr. Comp. 31 [4], 232-243. https://doi.org/10.1016/j.cemconcomp.2009.02.006

Zych, T.; Wojciech, K. (2012) Study on the properties of cement mortars with basalt fibres. Brittle Matrix Composites. Woodhead Publishing: 155-166. https://doi.org/10.1533/9780857099891.155

Asadi, A.; Baaij, F.; Mainka, H.; Rademacher, M.; Thompson, J.; Kalaitzidou, K. (2017) Basalt fibers as a sustainable and cost-effective alternative to glass fibers in sheet molding compound (SMC). Comp. Part B: Eng., 123, 210-218. https://doi.org/10.1016/j.compositesb.2017.05.017

Ali, M.; Liu, A.; Sou, H.; Chouw, N. (2012) Mechanical and dynamic properties of coconut fibre reinforced concrete. Constr. Build. Mater. 30, 814-825. https://doi.org/10.1016/j.conbuildmat.2011.12.068

Lertwattanaruk, P.; Suntijitto, A. (2015) Properties of natural fiber cement materials containing coconut coir and oil palm fibers for residential building applications. Constr. Build. Mater.94, 664-669. https://doi.org/10.1016/j.conbuildmat.2015.07.154

Toihidul Islam, M.; Bindiganavile, V. (2011) The impact resistance of masonry units bound with fibre reinforced mortars. Constr. Build. Mater. 25 [6], 2851-2859. https://doi.org/10.1016/j.conbuildmat.2010.12.049

EN 1015-11:2000Methods of test for mortar for masonry. Part 11: Determination of flexural and compressive strength of hardened mortar.

Khedari, J.; Watsanasathaporn, P.; Hirunlabh, J. (2005) Development of fibre-based soil-cement block with low thermal conductivity. Cem. Concr. Comp. 27 [1], 111-116. https://doi.org/10.1016/j.cemconcomp.2004.02.042

Khedari, J.; Suttisonk, B.; Pratinthong, N.; Hirunlabh, J. (2001) New lightweight composite construction materials with low thermal conductivity. Cem. Concr. Comp. 23 [1], 65-70. https://doi.org/10.1016/S0958-9465(00)00072-X

Asasutjarit, C.; Charoenvai, S.; Hirunlabh, J.; Khedari, J. (2009) Materials and mechanical properties of pretreated coir-based green composites. Comp. Part B: Eng. 40 [7], 633-637. https://doi.org/10.1016/j.compositesb.2009.04.009

Ramamoorthy, S.K.; Skrifvars, M.; Persson, A. (2015) A Review of Natural Fibers Used in Biocomposites: Plant, Animal and Regenerated Cellulose Fibers. Polymer Reviews, 55 [1], 107-162. https://doi.org/10.1080/15583724.2014.971124

Zhang, K.; Wang, F.X.; Liang, W.Y.; Wang, Z.Q.; Duan, Z.W.; Yang, B. (2018) Thermal and Mechanical Properties of Bamboo Fiber Reinforced Epoxy Composites. Polymers, 10 [6], 18. https://doi.org/10.3390/polym10060608 PMid:30966642 PMCid:PMC6404121

Naveen, J.; Jawaid, M.; Amuthakkannan, P.; Chandrasekar, M. (2019) Mechanical and physical properties of sisal and hybrid sisal fiber-reinforced polymer composites. Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites. Woodhead Publishing, 427-440. https://doi.org/10.1016/B978-0-08-102292-4.00021-7

Khonsari, S.V.; Eslami, E.; Anvari, A. (2018) Fibrous and non-fibrous Perlite concretes-experimental and SEM studies. European J. Environm. Civil Eng., 22 [2], 138-164. https://doi.org/10.1080/19648189.2016.1182083

EN 1052-1:1999. Methods of test for masonry. Determination of compressive strength.

Zia, A.; Ali, M. (2017) Behavior of fiber reinforced concrete for controlling the rate of cracking in canal-lining. Constr. Build. Mater. 155, 726-739. https://doi.org/10.1016/j.conbuildmat.2017.08.078

Guerreiro, J.; Proença, J.; Ferreira, J.G.; Gago, A. (2018) Experimental characterization of in-plane behaviour of old masonry walls strengthened through the addition of CFRP reinforced render. Comp. Part B: Eng.148, 14-26. https://doi.org/10.1016/j.compositesb.2018.04.045

Marcari, G.; Manfredi, G.; Prota, A.; Pecce, M. (2007) In-plane shear performance of masonry panels strengthened with FRP. Comp. Part B: Eng. 38 [7-8], 887-901. https://doi.org/10.1016/j.compositesb.2006.11.004

Dizhur, D.; Griffith, M.; Ingham, J. (2014) Out-of-plane strengthening of unreinforced masonry walls using near surface mounted fibre reinforced polymer strips. Eng. Struct. 59, 330-343. https://doi.org/10.1016/j.engstruct.2013.10.026

Publicado

2019-12-30

Cómo citar

Qamar, F., Thomas, T., & Ali, M. (2019). Evaluación de las propiedades mecánicas de morteros fibrosos y bloques de suelo estabilizado y entrecruzado (ISSB) para viviendas de mampostería de bajo costo. Materiales De Construcción, 69(336), e201. https://doi.org/10.3989/mc.2019.13418

Número

Sección

Artículos