Evaluación de las propiedades físico-mecánicas de morteros de albañilería producidos en base de cemento y cal con áridos reciclados mixtos
DOI:
https://doi.org/10.3989/mc.2020.02819Palabras clave:
Mortero, Propiedades mecánicas, Propiedades físicas, Resistencia a compresión, Tratamiento de residuosResumen
Este estudio investigó los efectos físico-mecánicos de los morteros de cemento y cal con áridos reciclados de residuos de construcción y demolición (RCD). El árido natural (AN) se reemplazó en volumen al 25%, 50%, 75% y 100% por el árido reciclado mixto (ARM) obtenido de la trituración de RCD. Se prepararon cinco tipos de morteros con una relación volumétrica de 1: 1: 6 (cemento, cal y áridos) y una relación de agua / aglomerante en función de la consistencia fija de 260 mm. Se analizaron los efectos del ARM en las propiedades de los morteros frescos y endurecidos. Los resultados se analizaron utilizando un ANOVA-simple. La incorporación de ARM mejoró la mayoría de las propiedades físico-mecánicas de los morteros, excepto la densidad aparente endurecida, la absorción de agua y la porosidad. A largo plazo, las resistencias mecánicas aumentaron significativamente en todas las composiciones, especialmente en aquellas con porcentajes más altos de ARM. Los resultados obtenidos mostraron que el uso de ARM en morteros de albañilería es una alternativa para reducir la generación de residuos y el consumo de recursos naturales.
Descargas
Citas
Kisku, N.; Joshi, H.; Ansari, M.; Panda, S.K.; Nayak, S.; Dutta, S.C. (2017) A critical review and assessment for usage of recycled aggregate as sustainable construction material. Constr. Build. Mater. 131, 721-740. https://doi.org/10.1016/j.conbuildmat.2016.11.029
Muñoz-Ruiperez, C.; Rodríguez, A.; Gutiérrez-González, S.; Calderón, V. (2016.) Lightweight masonry mortars made with expanded clay and recycled aggregates. Constr. Build. Mater. 118, 139-145. https://doi.org/10.1016/j.conbuildmat.2016.05.065
Silva, R. V.; De Brito, J.; Dhir, R.K. (2015) Prediction of the shrinkage behavior of recycled aggregate concrete: A review. Constr. Build. Mater. 77, 327-339. https://doi.org/10.1016/j.conbuildmat.2014.12.102
Pacheco-Torgal, F. (2017). High tech startup creation for energy efficient built environment. Renew. Sustain. Energy Rev. 71, 618-629. https://doi.org/10.1016/j.rser.2016.12.088
Kulatunga, U.; Amaratunga, D.; Haigh, R.; Rameezdeen, R. (2006) Attitudes and perceptions of construction workforce on construction waste in Sri Lanka. Manag. Environ. Qual. An Int. J. 17, 57-72. https://doi.org/10.1108/14777830610639440
Krausmann, F.; Fischer-Kowalski, M.; Schandl, H.; Eisenmenger, N. (2008) The global sociometabolic transition: Past and present metabolic profiles and their future trajectories. J. Ind. Ecol. 12, 637-656. https://doi.org/10.1111/j.1530-9290.2008.00065.x
Tam, V.W.Y.; Soomro, M.; Evangelista, A.C.J. (2018) A review of recycled aggregate in concrete applications (2000-2017). Constr. Build. Mater. 172, 272-292. https://doi.org/10.1016/j.conbuildmat.2018.03.240
Contreras, M.; Teixeira, S.R.; Lucas, M.C.; Lima, L.C.N.; Cardoso, D.S.L.; da Silva, G.A.C.; Gregório, G.C.; de Souza, A.E.; dos Santos, A. (2016) Recycling of construction and demolition waste for producing new construction material (Brazil case-study). Constr. Build. Mater. 123, 594-600. https://doi.org/10.1016/j.conbuildmat.2016.07.044
Paz, D.H.F.; Lafayette, K.P.V. (2016) Forecasting of construction and demolition waste in Brazil. Waste Manag. Res. 34 [8], 708-716. https://doi.org/10.1177/0734242X16644680 PMid:27177555
Cabral, A.E.B.; Schalch, V.; Molin, D.C.C.D.; Ribeiro, J.L.D. (2010) Mechanical Properties Modeling of Recycled Aggregate Concrete. Constr. Build. Mater. 24 [4], 421-430. https://doi.org/10.1016/j.conbuildmat.2009.10.011
Moretti, J.P.; Sales, A.; Almeida, F.C.R.; Rezende, M.A.M.; Gromboni, P.P. (2016) Joint use of construction waste (CW) and sugarcane bagasse ash sand (SBAS) in concrete. Constr. Build. Mater. 113, 317-323. https://doi.org/10.1016/j.conbuildmat.2016.03.062
Silva, R. V.; De Brito, J.; Dhir, R.K. (2014) Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production. Constr. Build. Mater. 65, 201-217. https://doi.org/10.1016/j.conbuildmat.2014.04.117
Andrade, J.J. de O.; Possan, E.; Squiavon, J.Z.; Ortolan, T.L.P. (2018) Evaluation of mechanical properties and carbonation of mortars produced with construction and demolition waste. Constr. Build. Mater. 161, 70-83. https://doi.org/10.1016/j.conbuildmat.2017.11.089
Corinaldesi, V.; Moriconi, G. (2009) Behaviour of cementitious mortars containing different kinds of recycled aggregate. Constr. Build. Mater. 23 [1], 289-294. https://doi.org/10.1016/j.conbuildmat.2007.12.006
Cuenca-Moyano, G.M.; Martín-Morales, M.; Valverde- Palacios, I.; Valverde-Espinosa, I.; Zamorano, M. (2014) Influence of pre-soaked recycled fine aggregate on the properties of masonry mortar. Constr. Build. Mater. 70, 71-79. https://doi.org/10.1016/j.conbuildmat.2014.07.098
Ferro, G.A.; Spoto, C.; Tulliani, J.M.; Restuccia, L. (2015) Mortar Made of Recycled Sand from C&D. Procedia Eng. 109, 240-247. https://doi.org/10.1016/j.proeng.2015.06.224
Le, T.; Rémond, S.; Le Saout, G.; Garcia-Diaz, E. (2016) Fresh behavior of mortar based on recycled sand - Influence of moisture condition. Constr. Build. Mater. 106, 35-42. https://doi.org/10.1016/j.conbuildmat.2015.12.071
Ledesma, E.F.; Jiménez, J.R.; Ayuso, J.; Fernández, J.M.; De Brito, J. (2015) Maximum feasible use of recycled sand from construction and demolition waste for eco-mortar production - Part-I: Ceramic masonry waste. J. Clean. Prod. 87, 692-706. https://doi.org/10.1016/j.jclepro.2014.10.084
Martínez, I.; Etxeberria, M.; Pavón, E.; Díaz, N. (2013) A comparative analysis of the properties of recycled and natural aggregate in masonry mortars. Constr. Build. Mater. 49, 384-392. https://doi.org/10.1016/j.conbuildmat.2013.08.049
Restuccia, L.; Spoto, C.; Ferro, G.A.; Tulliani, J. (2016) Recycled Mortars with C&D Waste. Procedia Struct. Integr. 2, 2896-2904. https://doi.org/10.1016/j.prostr.2016.06.362
Saiz Martínez, P.; González Cortina, M.; Fernández Martínez, F.; Rodríguez Sánchez, A. (2016) Comparative study of three types of fine recycled aggregates from construction and demolition waste (CDW), and their use in masonry mortar fabrication. J. Clean. Prod. 118, 162-169. https://doi.org/10.1016/j.jclepro.2016.01.059
Samiei, R.R.; Daniotti, B.; Dotelli, R.P.G. (2015). Properties of cement-lime mortars vs. cement mortars containing recycled concrete aggregates. Constr. Build. Mater. 84, 84-94. https://doi.org/10.1016/j.conbuildmat.2015.03.042
Zhao, Z.; Remond, S.; Damidot, D.; Xu, W. (2015) Influence of fine recycled concrete aggregates on the properties of mortars. Constr. Build. Mater. 81, 179-186. https://doi.org/10.1016/j.conbuildmat.2015.02.037
Moriconi, G.; Corinaldesi, V.; Antonucci, R. (2003) Environmentally-friendly mortars : a way to improve bond between mortar and brick. Mater. Struct. 36 [10], 702-708. https://link.springer.com/content/pdf/10.1007% 2FBF02479505.pdf https://doi.org/10.1007/BF02479505
Angulo, S.C.; Ulsen, C.; John, V.M., Kahn, H.; Cincotto, M.A. (2009) Chemical-mineralogical characterization of C&D waste recycled aggregates from São Paulo, Brazil. Waste Manag. 29 [2], 721-730. https://doi.org/10.1016/j.wasman.2008.07.009 PMid:18926692
Ulsen, C.; Kahn, H.; Hawlitschek, G.; Masini, E.A.; Angulo, S.C.; John, V.M. (2013) Production of recycled sand from construction and demolition waste. Constr. Build. Mater. 40, 1168-1173. https://doi.org/10.1016/j.conbuildmat.2012.02.004
Bravo, M.; De Brito, J.; Pontes, J.; Evangelista, L. (2015) Durability performance of concrete with recycled aggregates from construction and demolition waste plants. Constr. Build. Mater. 77, 357-369. https://doi.org/10.1016/j.conbuildmat.2014.12.103
Bravo, M.; De Brito, J.; Pontes, J.; Evangelista, L. (2015) Mechanical performance of concrete made with aggregates from construction and demolition waste recycling plants. J. Clean. Prod. 99, 59-74. https://doi.org/10.1016/j.jclepro.2015.03.012
Cabral, A.E.B.; Schalch, V.; Molin, D.C.C.D.; Ribeiro, J.L.D. (2012) Performance estimation for concretes made with recycled aggregates of construction and demolition waste of some Brazilian cities. Mater. Res. 15 [6], 1037- 1046. https://doi.org/10.1590/S1516-14392012005000119
Pereira, P.; Evangelista, L.; De Brito, J. (2012) The effect of superplasticizers on the mechanical performance of concrete made with fine recycled concrete aggregates. Cem. Concr. https://doi.org/10.1016/j.cemconcomp.2012.06.009
Compos. 34 [9], 1044-1052. https://doi.org/10.1016/j. cemconcomp.2012.06.009
Thomas, C.; Setién, J.; Polanco, J.A.; Alaejos, P.; Sánchez De Juan, M. (2013) Durability of recycled aggregate concrete. Constr. Build. Mater. 40, 1054-1065. https://doi.org/10.1016/j.conbuildmat.2012.11.106
Jiménez, J.R.; Ayuso, J.; López, M.; Fernández, J.M.; De Brito, J. (2013) Use of fine recycled aggregates from ceramic waste in masonry mortar manufacturing. Constr. Build. Mater. 40, 679-690. https://doi.org/10.1016/j.conbuildmat.2012.11.036
Lima, P.R.L.; Leite, M.B. (2012) Influence of CDW Recycled Aggregate on Drying Shrinkage of Mortar. Open J. Civ. Eng. 2 [2], 53-57. https://doi.org/10.4236/ojce.2012.22009
Silva, R. V.; De Brito, J.; Dhir, R.K. (2016) Performance of cementitious renderings and masonry mortars containing recycled aggregates from construction and demolition wastes. Constr. Build. Mater. 105, 400-415. https://doi.org/10.1016/j.conbuildmat.2015.12.171
Corinaldesi, V. (2012) Environmentally-friendly bedding mortars for repair of historical buildings. Constr. Build. Mater. 35, 778-784. https://doi.org/10.1016/j.conbuildmat.2012.04.131
Rodrigues, F.; Evangelista, L.; de Brito, J. (2013) A new method to determine the density and water absorption of fine recycled aggregates. Mater. Res. 16 [5], 1045-1051. https://doi.org/10.1590/S1516-14392013005000074
Gayarre, F.L.; Boadella, I.L.; Pérez, C.L.-C.; López, M.S.; Cabo, A.D. (2017) Influence of the ceramic recycled agreggates in the masonry mortars properties. Constr. Build. Mater. 132, 457-461. https://doi.org/10.1016/j.conbuildmat.2016.12.021
Fernández-Ledesma, E.; Jiménez, J.R.; Ayuso, J.; Corinaldesi, V.; Iglesias-Godino, F.J. (2016) A proposal for the maximum use of recycled concrete sand in masonry mortar design. Mater. Construcc. 66 [321], e075 https://doi.org/10.3989/mc.2016.08414
Braga, M.; De Brito, J.; Veiga, R. (2015) Incorporation of fine sanitary ware aggregates in mortars. Constr. Build. Mater. 36, 960-968. https://doi.org/10.1016/j.conbuildmat.2012.06.031
Neno, C.; De Brito, J.; Veiga, R. (2014) Using fine recycled concrete aggregate for mortar production. Mater. Res. 17 [1], 168-177. https://doi.org/10.1590/S1516-14392013005000164
Vegas, I.; Ibañez, J.A.; Lisbona, A.; Sáez De Cortazar, A.; Frías, M. (2011) Pre-normative research on the use of mixed recycled aggregates in unbound road sections. Constr. Build. Mater. 25 [5], 2674-2682. https://doi.org/10.1016/j.conbuildmat.2010.12.018
Antiohos, S.; Tsimas, S. (2004) Activation of fly ash cementitious systems in the presence of quicklime: Part I. Compressive strength and pozzolanic reaction rate. Cem. Concr. Res. 34 [5], 769-779. https://doi.org/10.1016/j.cemconres.2003.08.008
Vichan, S.; Rachan, R.; Horpibulsuk, S. (2013) Strength and microstructure development in Bangkok clay stabilized with calcium carbide residue and biomass ash. ScienceAsia 39, 186-193. https://doi.org/10.2306/scienceasia1513-1874.2013.39.186
Tang, S.W.; Cai, X.H.; He, Z.; Shao, H.Y.; Li, Z.J.; Chen, E. (2016) Hydration process of fly ash blended cement pastes by impedance measurement. Constr. Build. Mater. 113, 939-950. https://doi.org/10.1016/j.conbuildmat.2016.03.141
Zhang, Z.; Li, L.; Ma, X.; Wang, H. (2016) Compositional, microstructural and mechanical properties of ambient condition cured alkali-activated cement. Constr. Build. Mater. 113, 237-245. https://doi.org/10.1016/j.conbuildmat.2016.03.043
Yildirim, S.T.; Meyer, C.; Herfellner, S. (2015) Effects of internal curing on the strength, drying shrinkage and freeze - thaw resistance of concrete containing recycled concrete aggregates. Constr. Build. Mater. 91, 288-296. https://doi.org/10.1016/j.conbuildmat.2015.05.045
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.