Características y propiedades de los ignimbritos de Bitlis y sus implicaciones ambientales

Autores/as

DOI:

https://doi.org/10.3989/mc.2020.06519

Palabras clave:

Bitlis, Análisis térmico, Propiedades físicas, Propiedades mecánicas, Ignimbrita, Metales pesados

Resumen


La roca Bitlis se utiliza como material de construcción y proviene de la lava emitida por los volcanes y su posterior transformación en ignimbritas. Este tipo de rocas se ha caracterizado física, química, toxicológica y radioactivamente utilizando diferentes procedimientos, incluida la determinación del coeficiente de conductividad térmica, espectrometría gamma, prueba de velocidad ultrasónica, ICP masas y extracción de metales. Los resultados indican que las rocas Bitlis tienen un ACI mayor que 1, aunque su contenido de radón es más bajo que el de otras rocas de origen volcánico. La lixiviación de metales de estas rocas indica que el Pb y el Cd pueden proporcionar un nivel de infiltración en el campo más alto que el nivel permitido por TCLP y tener riesgos toxicológicos no deseados. Los porcentajes de extracción de otros metales también apuntan a este problema de infiltración. A pesar de esto, el material ofrece buenas cualidades para su uso como material de construcción, como pueden ser sus coeficientes térmicos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Van Zalinge, M.E.; Cashman, K.V.; Sparks, R.S.J. (2018) Causes of fragmented crystals in ignimbrites: a case study of the Cardones ignimbrite, Northern Chile. Bull Volcanol. 80 [3], 22. https://doi.org/10.1007/s00445-018-1196-2

Şimşek, O.; Erdal, M. (2004) Ahlat Taşının (ignimbrit) bazı mekanik ve fiziksel özelliklerinin araştırılması. G.U. J. Sci. 17 [4], 71-78.

Jordan, N. J.; Rotolo, S.G.; Williams, R.; Speranza, F.; McIntosh, W.C.; Branney, M. J.; Scaillet, S. (2018) Explosive eruptive history of Pantelleria, Italy: Repeated caldera collapse and ignimbrite emplacement at a peralka­line volcano. J Volcano. Geoth. Res. 349, 47-73. https://doi.org/10.1016/j.jvolgeores.2017.09.013

Liszewska, K. M.; White, J. C.; Macdonald, R.; Bagiński, B. (2018) Compositional and thermodynamic variability in a stratified magma chamber: Evidence from the Green Tuff Ignimbrite (Pantelleria, Italy). J. Petrol. 59 [12], 2245-2272. https://doi.org/10.1093/petrology/egy095

Avery, M.S.; Gee, J.S.; Bowles, J.A.; Jackson, M. J. (2018) Paleointensity estimates from ignimbrites: The Bishop Tuff Revisited. Geochem. Geophy. Geosy. 19 [10], 3811-3831. https://doi.org/10.1029/2018GC007665

Yüksek, S. (2019) Mechanical properties of some building stones from volcanic deposits of mount Erciyes (Turkey). Mater. Construc. 69 [334], e187. https://doi.org/10.3989/mc.2019.04618

Koralay, T.; Özkul, M.; Kumsar, H.; Celik, S. B.; Pektaş, K. (2011) The effect of welding degree on geotechnical properties of an ignimbrite flow unit: The Bitlis castle case (eastern Turkey). Environ. Earth. Sci. 64 [3], 869-881. https://doi.org/10.1007/s12665-011-0931-1

Barbero-Barrera, M. M.; Flores-Medina, N.; Moreno- Fernández, E. (2019) Thermal, physical and mechanical characterization of volcanic tuff masonries for the restora­tion of historic buildings. Mater. Construcc. 69 [333], e179. https://doi.org/10.3989/mc.2019.12917

Burgos, D.; Guzmán, A.; Hossain, K.M.A.; Delvasto, S. (2017) The use of a volcanic material as filler in self-com­pacting concrete production for lower strength applications. Mater. Construcc. 67 [325], e111. https://doi.org/10.3989/mc.2017.09315

Wang, X.; Shen, X.; Wang, H.; Gao, C.; Zhang, T. (2016) Nuclear magnetic resonance analysis of freeze-thaw dam­age in natural pumice concrete. Mater. Construcc. 66 [322], e087. https://doi.org/10.3989/mc.2016.09014

Koralay T.; Özkul M.; Kumsar H.; Çelik S.B.; Pektaş, K. (2014) The Importance of Mineralogical, Petrographic and Geotechnical Studies in Historical Heritage: The Bitlis Castle Case (Bitlis-Eastern Anatolia). Selcuk University J. Engineer. Sci. Technol. 2 [3], 54-68. https://doi.org/10.15317/Scitech.201439631

Ivanović, M.D.; Kljajević, L.M.; Nenadović, M.; Bundaleski, N.; Vukanac, I.; Todorović, B.Ž.; Nenadović, S.S. (2018) Physicochemical and radiological characterization of kaolin and its polymerization products. Mater. Construcc. 68 [330], e155. https://doi.org/10.3989/mc.2018.00517

Merdanoglu, B.; Altınsoy, N. (2006) Radioactivity con­centrations and dose assessment for soil samples from Kestanbol granite area, Turkey. Radiat. Prot. Dosim. 121 [4], 399-405. https://doi.org/10.1093/rpd/ncl055 PMid:16698965

Kayakökü, H.; Karatepe, Ş.; Dogru, M. (2016) Measurements of radioactivity and dose assessments in some building materials in Bitlis, Turkey. Appl. Radiat. Isotopes. 115, 172-179. https://doi.org/10.1016/j.apradiso.2016.06.020 PMid:27389882

ISRM (2007) The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974-2006. In: Ulusay, R., Hudson, J.A. (Eds.), Suggested Methods Prepared by the ISRM Commission on Testing Methods, Compilation Arranged by the ISRM Turkish National Group. Kozan Ofset, Ankara, 628 pp.

Erdem, M.; Baykara, O.; Dogru, M.; Kuluöztürk, F. (2010) A novel shielding material prepared from solid waste containing lead for gamma ray. Radiat. Phys. Chem. 79 [9], 917-922. https://doi.org/10.1016/j.radphyschem.2010.04.009

Baykara, O.; Karatepe, Ş.; Doǧru, M. (2011) Assessments of natural radioactivity and radiological hazards in con­struction materials used in Elazig, Turkey. Radiat. Measur. 46 [1], 153-158. https://doi.org/10.1016/j.radmeas.2010.08.010

Trevisi, R.; Leonardi, F.; Risica, S.; Nuccetelli, C. (2018), Updated database on natural radioactivity in building materials in Europe. J. Environ. Radioactiv. 187, 90-105. https://doi.org/10.1016/j.jenvrad.2018.01.024 PMid:29429872

EPA, 1992. Test Method 1311 - TCLP, Toxicity Characteristic Leaching Procedure.

https://www.bureauveritas.com/services+sheet/metals-minerals/toxicity-characteristic-leaching-procedure-tclp, Access on: 26.03.2019.

Bayraktar C.A.; Avşar E.; Toröz İ.; Alp K.; Hanedar A. (2015) Stabilization and solidification of electric arc fur­nace dust originating from steel industry by using low grade MgO. Arch. Environ. Prot. 41 [4], 62-66. https://doi.org/10.1515/aep-2015-0040

EPA, (1994) Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma-Mass Spectrometry, https://www.epa.gov/sites/production/ files/2015-08/documents/method_200-8_rev_5-4_1994.pdf, Access on 26.03.2019.

TSE, 1987. Doğal yapı taşlarının muayene ve deney metotları (in Turkish), Türk Standartları Enstitüsü, Ankara.

Vasconcelos, G.; Lourenço, P. B.; Alves, C. A.; Pamplona, J. (2007) Prediction of the mechanical properties of granites by ultrasonic pulse velocity and Schmidt hammer hardness. North American Masonry Conference June 3-7 Missouri USA.

Fort, R.; de Buergo, M. A.; Perez-Monserrat, E. M. (2013) Non-destructive testing for the assessment of granite decay in heritage structures compared to quarry stone. Int. J. Rock. Mech. Min. 61, 296-305. https://doi.org/10.1016/j.ijrmms.2012.12.048

Sharma, P. K.; Khandelwal, M.; Singh, T. N. (2011) A cor­relation between Schmidt hammer rebound numbers with impact strength index, slake durability index and P-wave velocity. Int. J. Earth Sci. 100 [1], 189-195. https://doi.org/10.1007/s00531-009-0506-5

Karakuş, M.; Tütmez, B. (2006) Fuzzy and multiple regres­sion modelling for evaluation of intact rock strength based on point load, Schmidt hammer and sonic velocity. Rock Mech. Rock Eng. 39 [1], 45-57. https://doi.org/10.1007/s00603-005-0050-y

Sharma, P. K.; Singh, T. N. (2008) A correlation between P-wave velocity, impact strength index, slake durability index and uniaxial compressive strength. B. Eng. Geol. Environ. 67 [1], 17-22. https://doi.org/10.1007/s10064-007-0109-y

Kurtuluş, C.; Irmak, T. S.; Sertçelik, I. (2010) Physical and mechanical properties of Gokceada: Imbros (NE Aegean Sea) island andesites. B. Eng. Geol. Environ. 69 [2], 321-324. https://doi.org/10.1007/s10064-010-0270-6

Işık, E.; Bakış, A.; Akıllı, A.; Hattaoğlu, F. (2015) Usability of Ahlat Stone as Aggregate in Reactive Powder Concrete. Int. J. App. Sci. Eng. Res. 4 [4], 507-514.

Dinçer, İ.; Özvan, A.; Akın, M.; Tapan, M.; Oyan, V. (2012) İgnimbiritlerin kapiler su emme potansiyellerinin değerlendirilmesi: Ahlat Taşı örneği. YYUFBED. 17 [2], 64-71. https://dergipark.org.tr/tr/pub/yyufbed/issue/21967/235855.

Pamuk, E.; Büyüksaraç, A. (2017) Investigation of strength characteristics of natural stones in Ürgüp (Nevşehir/ Turkey). BUSciTech. 7 [2], 74-79. https://doi.org/10.17678/beuscitech.305653

Lorenzi, A.; Tisbierek, F.T.; Silva, L. C. P. (2007) Ultrasonic pulse velocity análysis in concrete specimens. In IV Conferencia Panamericana de END, Buenos Aires.

Karakaya, M. C. Dogru, M.; Karakaya, N.; Vural, H. C.; Kuluöztürk, F.; Bal, S. Ş. (2015) Radioactivity concentra­tions and dose assessments of therapeutic peloids from some Turkish spas. Clay Miner. 50 [2], 221-232. https://doi.org/10.1180/claymin.2015.050.2.06

Karakaya, M. Ç.; Dogru, M.; Karakaya, N.; Kuluöztürk, F.; Nalbantçılar, M. T. (2017) Radioactivity and hydrochemical properties of certain thermal Turkish spa waters. J, Water Health. 15 [4], 591-601. https://doi.org/10.2166/wh.2017.263 PMid:28771156

Rado SYS (2011) Radosys User Manuel, Hungary.

Turkish Atomic Energy Authority (TAEK) (2000) Unofficial Translation, (May), 1-5. https://www.oecd-nea. org/law/legislation/turkey.pdf

Akkurt, I.; Akyıldırım, H.; Mavi, B.; Kilincarslan, S.; Basyigit, C. (2010) Photon attenuation coefficients of con­crete includes barite in different rate. Ann. Nucl. Energy. 37 [7], 910-914. https://doi.org/10.1016/j.anucene.2010.04.001

RLW, (2010) Regulation on Landfilling of Wastes, Turkish Ministry of Environment and Forestry. Official gazette date and number: 26.03.2010; 27533.

Publicado

2020-06-30

Cómo citar

Işık, E., Büyüksaraç, A., Avşar, E., Kuluöztürk, M. F., & Günay, M. (2020). Características y propiedades de los ignimbritos de Bitlis y sus implicaciones ambientales. Materiales De Construcción, 70(338), e214. https://doi.org/10.3989/mc.2020.06519

Número

Sección

Artículos