Interpretación de anisotropías petrográficas en granitos ornamentales basada en la medida de la velocidad de las ondas P

Autores/as

DOI:

https://doi.org/10.3989/mc.2020.15419

Palabras clave:

Granito, Microfisuración, Propiedades físicas, Rocas ornamentales, Durabilidad

Resumen


La existencia de una posible anisotropía originada por orientación de minerales y/o redes de microfisuración en rocas graníticas no es fácilmente detectable a simple vista. Cinco rocas graníticas de Galicia, denominadas comercialmente Albero, gris Alba, gris Mondariz, rosa Porriño y Traspielas, se car­acterizaron petrográficamente, mediante estudios texturales y mineralógicos utilizando microscopía óptica de polarización, realizándose también estudios fractográficos bajo microscopía electrónica de barrido. Se midieron las velocidades de propagación de las ondas longitudinales (Vp) en tres direcciones ortogonales en muestras cúbicas orientadas según el rift (denominado así en cantería como la superficie preferente de partición). Vp se midió en muestras secas y saturadas. Todas las muestras secas mostraron un comportamiento anisótropo de Vp. A partir de los datos obtenidos se han interpretado las redes de distribución de microfisuras y la orientación de minerales.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Calleja, L.; Rodríguez-Rey, A.; Ruiz de Argandoña, V.G.; Sánchez-Delgado, N.; Camino, C. (2014) Textural anisot­ropies characterization of granitic rocks using P wave velocities. In: Rock Engineering and Rock Mechanics: Structures in and on Rock Masses. 173-177. Eurock Vigo. Taylor & Francis Group, London, (2014). https://doi.org/10.1201/b16955-26

Ziegler, M.; Loew, S.; Bahat, D. (2014) Growth of exfo­liation joints and near-surface stress orientations inferred from fractographic markings observed in the upper Aar valley (Swiss Alps). Tectonophysics. 626, 1-20. https://doi.org/10.1016/j.tecto.2014.03.017

Yarahmadi, R.; Bagherpour, R.; Taherian, S.G.; Sousa, L.M.O. (2018) Discontinuity modelling and rock block geometry identification to optimize production dimension stone quarries. Eng. Geol. 232, 22-33. https://doi.org/10.1016/j.enggeo.2017.11.006

Yarahmadi, R.; Bagherpour, R.; Khademian, A.; Sousa, L.M.O.; Almasi, S.N.; Esfahane, M.M. (2019). Determining the optimum cutting direction in granite quarries through experimental studies: a case study of a granite quarry. Bull. Eng. Geol. Environ. 78, 459-467. https://doi.org/10.1007/s10064-017-1158-5

Lama, R.D.; Vutukuri, V.S. (1978) Handbook of mechani­cal properties of rocks (Testing techniques and results). Vol. II. Trans Tech. Publications, (1978).

Barton, N. (2007) Rock Quality, Seismic Velocity, Attenuation and Anisotropy. London: CRC Press. https://doi.org/10.1201/9780203964453

Sousa, L.M.O.; Suárez del Río, L.M.; Calleja, L.; Ruiz de Argandoña, V.G.; Rodriguez-Rey, A. (2005) Influence of microfractures and porosity on the physico-mechan­ical properties and weathering of ornamental granites. Eng. Geol., 77 [1-2], 153-158. https://doi.org/10.1016/j.enggeo.2004.10.001

Río, L.M. del; López, F.; Esteban, F.J.; Tejado, J.J.; Mota, M.; González, I.; San Emeterio, J.L.; Ramos, A. (2006) Ultrasonic characterization of granites obtained from industrial quar­ries of Extremadura (Spain). Ultrasonics. 44, Supplement, e1057-e1061. https://doi.org/10.1016/j.ultras.2006.05.098 PMid:16814343

Freire-Lista, D.M.; Fort, R. (2017). Exfoliation micro­cracks in building granite. Implications for anisot­ropy. Eng. Geol. 220, 85-93. https://doi.org/10.1016/j.enggeo.2017.01.027

Kern, H.; Mengel, K.; Strauss, K.W.; Ivankina, T.I.; Nikitin, A.N.; Kukkonen, I.T. (2008) Elastic wave velocities, chem­istry and modal mineralogy of crustal rocks sampled by the Outokumpu Scientific Drill Hole: evidence from lab mea­surements and modeling. Phys. Earth Planet. Int.175 [3-4], 151-166. https://doi.org/10.1016/j.pepi.2009.03.009

Kern, H.; Mengel, K. (2011) P and S-wave velocities and velocity anisotropy of core samples from the Outokumpu 2500m crustal section: implications for the nature of seis­mic reflections. In: Geological Survey of Finland, Special Paper 51, 83-94.

Vázquez, P.; Alonso, F. J.; Esbert, R. M.; Ordaz, J. (2010) Ornamental granites: Relationships between P-waves velocity, water capillary absorption and the crack net­work. Const. Build. Mater. 24 [12], 2536-2541. https://doi.org/10.1016/j.conbuildmat.2010.06.002

Wang, H.; Pan, J.; Wang, S.; Zhu, H. (2015) Relationship between macrofracture density, P-wave velocity and per­meability of coal. J. Appl. Geophys. 117, 111-117. https://doi.org/10.1093/gji/ggu384

Wang, X-q.; Schubnel, A.; Fortin, J.; Gueguen, Y.; Ge, H-q. (2012) Vp/Vs ratio: dispersion and anisot­ropy effects in cracked rocks. Geophys. Res. Abst. 14, EGU2012, Vienna, Austria, 5733.

Louis, L.; David, Ch.; Spaceek, P.; Wong, T.-f; Fortin, J.; Song, S.R. (2012) Elastic anisotropy of core samples from the Taiwan Chelungpu Fault Drilling Project (TCDP): direct 3-D measurements and weak anisotropy approxi­mations. Geophys. J. Int. 188 [1], 239-252. https://doi.org/10.1111/j.1365-246X.2011.05247.x

Dai, F.; Xia, K.W. (2013) Laboratory measurements of the rate dependence of the fracture toughness anisotropy of Barre granite. Int. J. Rock Mech. Min. Sci. 60, 57-65. https://doi.org/10.1016/j.ijrmms.2012.12.035

Fort, R.; Varas, M.J.; Alvarez de Buergo, M.; Martin-Freire, D. (2011) Determination of anisotropy to enhance the durability of natural stone. J. Geophys. Eng. 8 [3], S132-S144.. https://doi.org/10.1088/1742-2132/8/3/S13

Freire-Lista, D.M.; Fort, R. (2016). Causes of scaling on bush-hammered heritage ashlars: a case study-Plaza Mayor of Madrid (Spain). Environ. Earth Sci. 75, 932. https://doi.org/10.1007/s12665-016-5688-0

Godfrey, N.J.; Christensen, N.I.; Okaya, D.A. (2000) Anisotropy of schists: Contribution of crustal anisot­ropy to active source seismic experiments and shear wave splitting observations. J. Geophys. Res., 105 [B12], 27991-28007). https://doi.org/10.1029/2000JB900286

Cholach, P.Y.; Schmitt, D.R. (2006) Intrinsic elasticity of a textural transverserly isotropic muscovite aggre­gate: Comparisons to the seismic anisotropy of schists and shales. J. Geophys. Res. 111, B09410. https://doi.org/10.1029/2005JB004158

Ji, S.; Shao, T.; Salisbury, M.H.; Sun, Sh.; Michibayashi, K.; Zhao, W.; Long, Ch.; Liang, F.; Satsuwkawa, T. (2014) Plagioclase preferred orientation and induced seismic anisotropy in mafic igneous rocks. J. Geophys. Res. 119 [4], 8064-8088. https://doi.org/10.1002/2014JB011352

Kern, H.; Ivankina, T.; Nikitin, A.; Lokajícek, T.; Pros, Z. (2008) The effect of oriented microcracks and crys­tallographic and shape preferred orientation on bulk elastic anisotropy of a foliated biotite gneiss from Outokumpu. Tectonophysics. 457 [3-4], 143-149. https://doi.org/10.1016/j.tecto.2008.06.015

Karlqvist, R.; Lassila, I.; Hæggström, E.; Pesonen, L.J. (2012) Ultrasonic velocity anisotropy technique to enhance seismic surveys and ore prospecting. In: IEEE International Ultrasonics Symposium Proceeding. 2674-2677. https://doi.org/10.1109/ULTSYM.2012.0670

Ong, O.; Schmitt, D.R.; Kofman, R. (2015) Seismic anisot­ropy and elastic properties of a VTI medium. In: Third International Workshop on Rock Physics. Perth, Western Australia.

Sun, S.; Ji, S.; Wang, Q.; Salisbury, M.; Kern, H. (2012) P-wave velocity differences between surface-derived and core samples from the Sulu ultrahigh-pressure terrane: Implications for in situ velocities at great depths. Geology. 40 [7], 651-654. https://doi.org/10.1130/G33045.1

Martínez Catalán, J.R.; Pérez-Estaún, A.; Bastida, F.; Pulgar, J.A.; Marcos, A. (1990) Structure. In: Dallmeyer R.D., Garcia E.M. (eds) Pre-Mesozoic Geology of Iberia. IGCP-Project 233 (Terranes in the Circum-Atlantic Paleozoic Orogens). Heidelberg, Berlin: Springer. https://doi.org/10.1007/978-3-642-83980-1_9

UNE-EN 1936 (2007) Natural Stone test methods. Determination of real density and apparent density of total and open porosity. European Committee for Standardization. (2007).

UNE-EN 14579 (2007) Natural Stone test methods. Determination of sound speed propagation. European Committee for Standardization. (2005).

Bauer, S.J.; Johnson, B. (1979) Effects of slow heating on the physical properties of the Westerly and Charcoal granites. In: Proc. 20th U.S. Symp. on Rock Mechanics, 12 pp.

Ruiz de Argandoña, V.G.; Calleja, L.; Montoto, M. (1985) Determinación experimental del umbral de microfisura­ción térmica de la roca matriz o intact rock. Trabajos de Geología. 15, 299-306.

Calleja, L.; Ruiz de Argandoña, V.G.; Rodríguez-Rey, A.; Montoto, M. (1987) Thermal microfissuration devel­opment in a granodioritic rock: A qualitative assesment by non destructive techniques. In: Sixth Meeting of the European Clay Groups, Euroclay' 87. 13-16.

Calleja, L. (1991) Variación de propiedades físicas en rocas cristalinas sometidas a gradientes térmicos. Universidad de Oviedo, Servicio de publicaciones (1991).

Ruiz de Argandoña, V.G. (1991) Estudio de la microfi­suracion térmica mediante emisión acústica: interpre­tación petrográfica. Universidad de Oviedo, Servicio de publicaciones.

Tourenq, C.; Fourmaintraux, D.; Denis, A. (1971) Propagation des ondes et discontinuités des roches. In: Proc. Int. Symp. Int. Soc. Rock Mech.

Delgado Rodrigues, J. (1983) Studies of fissuration of rocks. G.P. Newsletter 4. In: Group petrography of the Icomos Stone Committee. 30-33. Strasbourg.

Carmichael, R.S. (1989) Practical handbook of physical properties of rocks and minerals. FL: CRC Press, Boca Raton, Florida. (1989).

Le Maitre, R.W. (Ed.) (2002) Igneous rock. A classifica­tion and glossary of terms. Recommendations of the I.U.G.S. Cambridge University Press. (2002). https://doi.org/10.1017/CBO9780511535581

Publicado

2020-09-15

Cómo citar

Calleja, L., Ruiz de Argandoña, V. G., Sánchez-Delgado, N., & Setién, A. (2020). Interpretación de anisotropías petrográficas en granitos ornamentales basada en la medida de la velocidad de las ondas P. Materiales De Construcción, 70(339), e227. https://doi.org/10.3989/mc.2020.15419

Número

Sección

Artículos

Artículos más leídos del mismo autor/a