Efecto de la relación entre el árido grueso y el fino en retracción por secado de pavimentos de hormigón compactados con rodillo en diferentes condiciones de curado

Autores/as

  • M. Abbasi Department of Building Surveying, Faculty of Built Environment, University of Malaya- Center for Building, Construction & Tropical Architecture (BuCTA), Faculty of Built Environment, University of Malaya https://orcid.org/0000-0002-0157-8221
  • P. Shafigh Center for Building, Construction & Tropical Architecture (BuCTA), Faculty of Built Environment, University of Malaya - Center for Transportation Research, Faculty of Engineering, University of Malaya https://orcid.org/0000-0002-8576-3984
  • M.R. Baharum Department of Building Surveying, Faculty of Built Environment, University of Malaya - Center for Building, Construction & Tropical Architecture (BuCTA), Faculty of Built Environment, University of Malaya https://orcid.org/0000-0003-4120-9444

DOI:

https://doi.org/10.3989/mc.2021.03520

Palabras clave:

Pavimento de hormigón compactado con rodillo, Retracción por secado, Relación entre árido grueso y fino, Contenido de cemento, Propiedades mecánicas

Resumen


La retracción por secado es un fenómeno inevitable que produce fisuras y eventualmente cambios de volumen notables en el hormigón endurecido. En este estudio se investigó el comportamiento de la tracción por retracción por secado de pavimentos de hormigón compactado con rodillo (HCR) en dos condiciones de curado diferentes. Las variables consideradas en estos pavimentos HCR fueron la relación entre el árido grueso y el fino (G/F), considerando valores de 0,7, 1, 1,2 y 1,5, y la dosis de cemento, del 12 % y del 15 %. También se realizaron ensayos Vebe del HCR fresco, así como ensayos de resistencia a la compresión, resistencia a la tracción indirecta y de flexión de los HCR endurecidos. Los resultados de los ensayos indican que al aumentar el contenido de cemento del 12% al 15%, la tracción por retracción por secado aumentó tanto en condiciones de curado como de no curado. En general, la tracción por retracción por secado aumentó significativamente cuando la relación G/F era inferior a 1,0. Se recomienda que la relación G/F del árido esté comprendida en el rango de 1,0 a 1,2 en la mezcla de HCR para pavimentos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Van Dam, T.; Taylor, P.; Fick, G.; VanGeem, M.; Lorenz, E. (2012) Sustainable concrete pavements: a manual of practice. https://www.semanticscholar.org/paper/Sustainable-Concrete-Pavements%3A-A-Manual-of-Dam-Taylor/773d1e391e-13173dc27abffc74c5d186823d5c93.

Zollinger, D.G. (2016) Roller-Compacted Concrete Pavement: [techbrief] (No. FHWA-HIF-16-003). United States. Federal Highway Administration https://www.fhwa.dot.gov/pavement/pub_details.cfm?id=993.

Harrington, D.; Abdo, F.; Adaska, W.; Hazaree, C.V.; Ceylan, H.; Bektas, F. (2010) Guide for roller-compacted concrete pavements. https://lib.dr.iastate.edu/intrans_reports/102/.

Pittman, D.W. (1989) The Effects of the Construction Process on Selected Fresh and Hardened Properties of Roller-Compacted Concrete (RCC) Pavements. Army engineer waterways experiment station. Vicksburg Ms Geotechnical Lab. https://apps.dtic.mil/sti/citations/ADA213735.

Neville, A.M. (1995) Properties of concrete (Vol. 4). London: Longman.

Cement Concrete and Aggregates Australia (2002) Drying Shrinkage of Cement and Concrete. https://www.ccaa.com.au/iMIS_Prod.

Avram, C. (1981) Concrete Strength and Strains, Elsevier Scientific Pub. Co. (1981).

Khayat, K.H.; Libre, N.A. (2014) Roller compacted concrete: field evaluation and mixture optimization (No. NUTC R363). Missouri University of Science and Technology. Center for Transportation Infrastructure and Safety. https://www.semanticscholar.org/paper/Roller-Compacted-Concrete%3A-Field-Evaluation-and-Khayat-Libre/002baa-236c54e20a58991d675089cf08233b7fdb.

Pittman, D.W.; Ragan, S.A. (1998) Drying shrinkage of roller-compacted concrete for pavement applications. Mater. Jour. 95 [1], 19-26. https://doi.org/10.14359/348

Gholami, N.; Modarres, A. (2019) Shrinkage behaviour of superplasticised RCCP and its relationship with internal temperature. Inter. Pave. Engi. 20 [1], 12-23. https://doi.org/10.1080/10298436.2016.1244438

Jingfu, K.; Chuncui, H.; Zhenli, Z. (2009) Strength and shrinkage behaviors of roller-compacted concrete with rubber additives. Mater. Struc. 42 [8], 1117-1124. https://doi.org/10.1617/s11527-008-9447-x

Hashemi, M.; Shafigh, P.; Karim, M.R.B.; Atis, C.D. (2018) The effect of coarse to fine aggregate ratio on the fresh and hardened properties of roller-compacted concrete pavement. Const. Build. Mater. 169, 553-566. https://doi.org/10.1016/j.conbuildmat.2018.02.216

Carlson, R.W. (1938) Drying shrinkage of concrete as affected by many factors. American Soc Testing & Materials Proc. 38 [2], 419-437.

Rao, G.A. (2001) Long-term drying shrinkage of mortar-influence of silica fume and size of fine aggregate. Cem. Concr. Res. 31 [2], 171-175. https://doi.org/10.1016/S0008-8846(00)00347-1

Pickett, G. (1956) Effect of aggregate on shrinkage of concrete and a hypothesis concerning shrinkage. J. Proceed. 52 [1], 581-590. https://doi.org/10.14359/11617

Neville, A.M. (1995) Properties of concrete, forth Edition. By AM Neville.

Kosmatka, S.H.; Wilson, M.L. (2016) Portland Cement Association; 16th edition.

ASTM C1435 / C1435M-14 (2014) Standard practice for molding roller-compacted concrete in cylinder molds using a vibrating hammer. Annual book of ASTM standards. Philadelphia (PA, USA): American Society for Testing and Materials.

ACI 211.3R-02 (2002) Guide for selecting proportions for no-slump concrete.

ASTM C157 / C157M-17 (2017) Standard test method for length change of hardened hydraulic-cement mortar and concrete. ASTM International, West Conshohocken, PA.

ASTM C39 / C39M-20 (2020) Standard test method for compressive strength of cylindrical concrete specimens, ASTM International, West Conshohocken, PA.

ASTM C496 / C496M-17 (2017) Standard test method for splitting tensile strength of cylindrical concrete specimens. ASTM International, West Conshohocken, PA.

ASTM C78 / C78M-18 (2010) Standard test method for flexural strength of concrete (using simple beam with thirdpoint loading). ASTM International, West Conshohocken, PA.

ASTM C1170 / C1170M-20 (2010) Standard test method for determining consistency and density of roller-compacted concrete using a vibrating table. ASTM International, West Conshohocken, PA.

Yerramala, A.; Babu, K.G. (2011) Transport properties of high-volume fly ash roller compacted concrete. Cem. Conc. Comp. 33 [10], 1057-1062. https://doi.org/10.1016/j.cemconcomp.2011.07.010

Hashemi, M.; Shafigh, P.; Abbasi, M.; Asadi, I. (2019) The effect of using low fines content sand on the fresh and hardened properties of roller-compacted concrete pavement. Case Stud. Const. Mater. 11, e00230. https://doi.org/10.1016/j.cscm.2019.e00230

Vahedifard, F.; Nili, M.; Meehan, C.L. (2010) Assessing the effects of supplementary cementitious materials on the performance of low-cement roller compacted concrete pavement. Const. Build. Mater. 24 [12], 2528-2535. https://doi.org/10.1016/j.conbuildmat.2010.06.003

Neville, A.M.; Brooks, J.J. (2008) Concrete Technology, Malaysia: Prentice Hall.

Calverley, M.A.A. (1977) The design of British airports authority pavements. International Conference on Concrete Pavement Design. https://trid.trb.org/view/717615.

Troxell, G. E. (1958) Log-time creep and shrinkage tests of plain and reinforced concrete. In ASTM. 58, 1101-1120.

Zhang, J.; Han, Y.D.; Gao, Y. (2014) Effects of water-binder ratio and coarse aggregate content on interior humidity, autogenous shrinkage, and drying shrinkage of concrete. Mater. Civil Engin. 26 [1], 184-189. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000799

Adam, I.; Sakata, K.; Ayano, T. (2001) Influence of coarse aggregate on the shrinkage of normal and high-strength concretes. J. Facult. Environ. Sci. Technol. Okayama Univ. 6 [1], 41-45.

Mehta, P. K.; Monteiro, P. J. (2017) Concrete microstructure, properties, and materials.

Neville, A.M. (1995) Properties of concrete (Vol. 4): Longman London.

Wongkeo, W.; Thongsanitgarn, P.; Chaipanich, A. (2012) Compressive strength and drying shrinkage of fly ash-bottom ash-silica fume multi-blended cement mortars. Mater. Des. (1980-2015). 36, 655-662. https://doi.org/10.1016/j.matdes.2011.11.043

Bogas, J.A.; Nogueira, R.; Almeida, N.G. (2014) Influence of mineral additions and different compositional parameters on the shrinkage of structural expanded clay lightweight concrete. Mater. Des. (1980-2015). 56, 1039-1048. https://doi.org/10.1016/j.matdes.2013.12.013

Aslam, M.; Shafigh, P.; Jumaat, M.Z. (2016) Drying shrinkage behaviour of structural lightweight aggregate concrete containing blended oil palm bio-products. Clean. Prod. 127, 183-194. https://doi.org/10.1016/j.jclepro.2016.03.165

Kovler, K.; Jensen, O.M. (2007) Internal curing of concrete. RILEM publications SARL.

Basma, A.A.; Jawad, Y.A. (1995) Probability model for the drying shrinkage of concrete. Mater. 92 [3], 246-251. https://doi.org/10.14359/1116

Siegel, J.A.; Mirakovits, J.A.; Hudson, B. (2013) Concrete mix design, quality control and specification. CRC Press. https://doi.org/10.1201/b15624

Videla, C.; Carreira, D.J.; Garner, N. (2008) Guide for modeling and calculating shrinkage and creep in hardened concrete. ACI report, 209.

Publicado

2021-05-05

Cómo citar

Abbasi, M. ., Shafigh, P. ., & Baharum, M. . (2021). Efecto de la relación entre el árido grueso y el fino en retracción por secado de pavimentos de hormigón compactados con rodillo en diferentes condiciones de curado. Materiales De Construcción, 71(342), e246. https://doi.org/10.3989/mc.2021.03520

Número

Sección

Artículos

Datos de los fondos

Universiti Malaya
Números de la subvención RF001F-2018

Artículos más leídos del mismo autor/a