Determinación de la resistencia a compresión temprana y el módulo de elasticidad de HRF mediante la velocidad de paso del pulso ultrasónico
DOI:
https://doi.org/10.3989/mc.2021.14720Palabras clave:
Refuerzo de fibras, Propiedades mecánicas, Resistencia a la compresión, Módulo de elasticidad, HormigónResumen
Debido al aumento del empleo de métodos rápidos de construcción y los desafíos de mantener los calendarios de construcción, ha aumentado la demanda de procedimientos que permitan asegurar la calidad del trabajo sin sacrificar el ritmo de producción. Dentro del control de calidad de los materiales de construcción, las propiedades mecánicas del hormigón se encuentran entre las preocupaciones más importantes. En este estudio se investiga la correlación entre la resistencia a la compresión y el módulo dinámico del hormigón reforzado con fibras, con la velocidad de pulso ultrasónico a edades tempranas hasta 7 días después del amasado. Para ello se diseñó un programa experimental que involucró 189 muestras de HRF que contenían diferentes tipos de fibras estructurales, fracciones de volumen de fibra y relaciones agua/cemento. Se desarrollaron ecuaciones matemáticas para predecir la resistencia a la compresión y el módulo dinámico a edades tempranas de cuatro tipos diferentes de hormigón reforzado con fibras, en función de la velocidad del pulso ultrasónico. Tanto la resistencia a la compresión como el módulo dinámico pronosticados a partir de las ecuaciones propuestas mostraron una buena correlación con las medidas experimentales llevadas a cabo.
Descargas
Citas
Nehdi, M.L.; Soliman, A.M. (2011) Early-age properties of concrete: Overview of fundamental concepts and state-of-the art research. Constr. Mater. 164 [2], 57-77. https://doi.org/10.1680/coma.900040
Pane, I.; Hansen, W. (2002) Early-age creep and stress relaxation of concrete containing blended cements. Mater. Struc. 35, 92. https://doi.org/10.1617/13800
Neville, A.M. (2004) Properties of Concrete, 4th edition. Wiley Harlow, New York, USA, (2004).
American Society for Testing Materials (2015) Standard specification for fiber-reinforced concrete. ASTM C1116. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, USA, (2015).
American Society for Testing Materials (2012) Standard test method for compressive strength of cylindrical concrete specimens. ASTM C39. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, USA, (2012).
American Society for Testing Materials (2010) Standard test method for static modulus of elasticity and Poisson's ratio of concrete in compression. ASTM C469. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, USA, (2010).
Lin, Y.; Kuo, S-F.; Hsiao, C.; Lai, C-P. (2007) Investigation of pulse velocity-strength relationship of hardened concrete. ACI Mater. J. 104 [4], 344-350. https://doi.org/10.14359/18823
Mahure, N.; Vijh, G.; Sharma, P.; Sivakumar, N.; Ratnam, M. (2011) Correlation between pulse velocity and compressive strength of concrete. Inter. J. Ear. Sci. Eng. 4 [6], 871-874.
Khademi, F.; Akbari, M.; Jamal, S.M. (2016) Prediction of concrete compressive strength using ultrasonic pulse velocity test and artificial neural network modeling. Roma. J. Mater. 46 [3], 343-350.
Ding, Y.; Kusterle, W. (2000) Compressive stress-strain relationship of steel fibre-reinforced concrete at early age. Cem. Concr. Res. 30 [10], 1573-1579. https://doi.org/10.1016/S0008-8846(00)00348-3
Elvery, R.; Ibrahim, L. (1976) Ultrasonic assessment of concrete strength at early ages. Mag. Concr. Res. 28 [97], 181-190. https://doi.org/10.1680/macr.1976.28.97.181
Naik, T.; Malhotra, V.; Popovics, J. (2003) The ultrasonic pulse velocity method. In: Handbook on nondestructive testing of concrete, Second Edition, 8-1 to 8-19, CRC Press, (2003). https://doi.org/10.1201/9781420040050.ch8
Nash't, I.; A'bour, S.; Sadoon, A. (2005) Finding an unified relationship between crushing strength of concrete and non-destructive tests. Mid. East Nond. Test. Conf. Exhi. 27-30. Nov., Bahrain, Manama, (2005).
Kheder, G. (1999) A two stage procedure for assessment of in situ concrete strength using combined non-destructive testing. Mater. Struct. 32, 410. https://doi.org/10.1007/BF02482712
Gebretsadik, B. (2013) Ultrasonic pulse velocity investigation of steel fiber reinforced self-compacted concrete. UNLV Theses, Dissertations, Professional Papers, and Capstones, 1828, University of Nevada, Las Vegas, USA.
Nitin; Verma, S.K. (2016) Effect on mechanical properties of concrete using nylon fibers. Inter. Res. J. Eng. Tech. 3 [7], 1751-1755.
Raouf, Z.; Ali, Z. (1983) Assessment of concrete characteristics at an early age by ultrasonic pulse velocity. J. Build. Res. 2 [1], 31-44.
Suksawang, N.; Wtaife, S.; Alsabbagh, A. (2018) Evaluation of elastic modulus of fiber-reinforced concrete. ACI Mater. J. 115 [2], 239-249. https://doi.org/10.14359/51701920
Nycon. (2020) Nylon Fibers. Fairless Hills, PA, (2021). https://nycon.com/collections/nylon-fibers.
Bobde, S.P.; Gandhe, G.R.; Tupe, D.H. (2018) Performance of glass fiber reinforced concrete. Inter. J. Advan. Res. Ideas Inno. Tech. 4 [3], 984-988.
Zheng, Y.; Wu, X.; He, G.; Shang, Q.; Xu, J.; Sun, Y. (2018) Mechanical properties of steel fiber-reinforced concrete by vibratory mixing technology. Adv. Civil Eng. 2018, 1-11. https://doi.org/10.1155/2018/9025715
Ramli, M.; Hoe, K.W. (2010) Influences of short discrete fibers in high strength concrete with very coarse sand. Amer. J. Appl. Scie. 7 [12], 1572-1578. https://doi.org/10.3844/ajassp.2010.1572.1578
Pawade, P.; Nagarnaik, P.; Pande, A. (2011) Performance of steel fiber on standard strength concrete in compression. Inter. J. Civil Struc. Eng. 2 [2], 483-492.
Mohod, M.V. (2015) Performance of polypropylene fiber reinforced concrete. IOSR J. Mech. Civil Eng. 12 [1], 28-36.
American Society for Testing Materials. (2019) Standard practice for making and curing concrete test specimens in the laboratory. ASTM C192. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, USA, (2019).
American Society for Testing Materials. (2016) Standard test method for pulse velocity through concrete. ASTM C597. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, USA, (2016).
American Society for Testing Materials. (2019) Standard test method for fundamental transverse, longitudinal, and torsional resonant frequencies of concrete specimens. ASTM C215. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, USA, (2019).
Yoon, H.; Kim, Y.J.; Kim, H.S.; Kang, J.W.; Koh, H-M. (2017) Evaluation of early-age concrete compressive strength with ultrasonic sensors. Sensors. 17 [8], 1817. https://doi.org/10.3390/s17081817 PMid:28783128 PMCid:PMC5579736
Madhavi, T.C.; Raju, L.S.; Mathur, D. (2014). Polypropylene fiber reinforced concrete - a review. Inter. J. Emer. Tech. Advan. Engin. 4 [4], 114-119.
Zollo, R.F. (1997) Fiber-reinforced concrete: an overview after 30 years of development. Cem. Concr. Comp. 19 [2], 107-122. https://doi.org/10.1016/S0958-9465(96)00046-7
Song, P.S.; Hwang, S.; Sheu, B.C. (2015). Strength properties of nylon and polypropylene fiber reinforced concretes. Cem. Concr. Res. 35 [8], 1546-1550. https://doi.org/10.1016/j.cemconres.2004.06.033
Thirumurugan, S.; Sivakumar, A. (2013) Compressive strength index of crimped polypropylene fibers in high strength cementitious matrix. World Appli. Scien. J. 24 [6], 698-702.
Yang, E-H.; Wang, S.; Yang, Y.; Li, V.C. (2008) Fiber-bridging constitutive law of engineered cementitious composites. J. Advan. Concr. Tech. 6 [1], 181-193. https://doi.org/10.3151/jact.6.181
Popovics, S.; Rose, J.; Popovics, J. (1990) The behaviour of ultrasonic pulses in concrete. Cem. Concr. Res. 20 [2], 259-270. https://doi.org/10.1016/0008-8846(90)90079-D
Nematzadeh, M.; Poorhosein, R. (2017) Estimating properties of reactive powder concrete containing hybrid fibers using UPV. Comp. Concr. 20 [4], 491-502.
Nematzadeh, M.; Dashti, J.; Ganjavi, B. (2018) Optimizing compressive behavior of concrete containing fine recycled refractory brick aggregate together with calcium aluminate cement and polyvinyl alcohol fibers exposed to acidic environment. Constr. Build. Mater. 164, 837-849. https://doi.org/10.1016/j.conbuildmat.2017.12.230
Nematzadeh, M.; Fallah-Valukolaee, F. (2017) Erosion resistance of high-strength concrete containing forta-ferro fibers against sulfuric acid attack with an optimum design. Constr. Build. Mater. 154, 675-686. https://doi.org/10.1016/j.conbuildmat.2017.07.180
Jones, R. (1962) Non-destructive Testing of Concrete. Cambridge University Press, London, (1962).
Haque, M.A.; Rasel-Ul-Alam, Md. (2018) Non-linear models for the prediction of specified design strengths of concretes development profile. HBRC J. 14 [2], 123-136. https://doi.org/10.1016/j.hbrcj.2016.04.004
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.