Estudio experimental y modelo teórico de la relación tensión-deformación en compresión de SHCC reforzado con fibras multiescala

Autores/as

DOI:

https://doi.org/10.3989/mc.2022.06021

Palabras clave:

Mortero, Refuerzo de fibras, Resistencia a compresión, Modelización, Propiedades mecánicas

Resumen


Con el fin de combinar de la mejor forma posible las características estructurales de compuestos base cemento a varios niveles y su proceso de fractura a múltiples escalas, se diseñó un compuesto híbrido de base cemento de endurecimiento por deformación reforzado con fibras (MsHySHCC), añadiendo fibra de acero en forma de gancho y fibra de carbonato de calcio (CaCO3) en SHCC reforzado con fibra de alcohol polivinílico convencional (PVA). Se evaluaron las propiedades a compresión de PVA-SHCC y MsHySHCC. Los resultados indican que el MsHySHCC diseñado tuvo un mejor rendimiento a compresión que el de PVA-SHCC. Las fibras de PVA sustituidas parcialmente por fibra de acero y de CaCO3 mejoraron los parámetros de compresión, sin embargo, una mayor sustitución de las fibras de PVA no causó una mejora al aumentar el contenido de fibras de CaCO3. Se desarrollaron dos tipos de modelos constitutivos de compresión semi-teóricos desde la perspectiva de la teoría de la mecánica del daño y la descripción matemática geométrica, respectivamente. Se encontró que ambos modelos propuestos se pueden aplicar para predecir las relaciones de tensión-deformación a compresión uniaxial de PVA-SHCC y MsHySHCCs

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Liu, T.; Yang, Y.; Chen, Z.; Li, Y.; Bai, R. (2020) Optimization of fiber volume fraction to enhance reinforcing efficiency in hybrid fiber reinforced strain hardening cementitious composite. Cem. Concr. Comp. 113, 103704. https://doi.org/10.1016/j.cemconcomp.2020.103704

Gesoglu, M.; Güneyisi, E.; Muhyaddin, G.F.; Asaad, D.S. (2016) Strain hardening ultra-high performance fiber reinforced cementitious composites: Effect of fiber type and concentration. Compos. Part B-Eng. 103, 74-83. https://doi.org/10.1016/j.compositesb.2016.08.004

Yu, K-Q.; Lu, Z-D.; Dai, J-G.; Shah, S.P. (2020) Direct tensile properties and stress-strain model of UHP-ECC. J. Mater. Civil Eng. 32 [1], 0419334. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002975

Ding, Y.; Yu, J-t.; Yu, K-Q.; Xu, S-L. (2018) Basic mechanical properties of ultra-high ductility cementitious composites: From 40 MPa to 120 MPa. Compos. Struct. 185, 634-645. https://doi.org/10.1016/j.compstruct.2017.11.034

Pan, Z.; Wu, C.; Liu, J.; Wang, W.; Liu, J. (2015) Study on mechanical properties of cost-effective polyvinyl alcohol engineered cementitious composites (PVA-ECC). Constr. Build. Mater. 78, 397-404. https://doi.org/10.1016/j.conbuildmat.2014.12.071

Felekoglu, B.; Tosun-Felekoglu, K.; Ranade, R.; Zhang, Q.; Li, V.C. (2014) Influence of matrix flowability, fiber mixing procedure, and curing conditions on the mechanical performance of HTPP-ECC. Compos. Part B-Eng. 60, 359-370. https://doi.org/10.1016/j.compositesb.2013.12.076

CHoi, W-C.; Yun, H-D.; Kang, J-W.; Kim, S-W. (2012) Development of recycled strain-hardening cement-based composite (SHCC) for sustainable infrastructures. Compos. Part B-Eng. 43 [2], 627-635. https://doi.org/10.1016/j.compositesb.2011.11.060

Maalej, M.; Quek, S.T.; Ahmed, S.F.U.; Zhang, J.; Lin, V.W.J.; Leong, K.S. (2012) Review of potential structural applications of hybrid fiber Engineered Cementitious Composites. Constr. Build. Mater. 36, 216-227. https://doi.org/10.1016/j.conbuildmat.2012.04.010

Pourfalah, S. (2018) Behaviour of engineered cementitious composites and hybrid engineered cementitious composites at high temperatures. Constr. Build. Mater. 158, 921-937. https://doi.org/10.1016/j.conbuildmat.2017.10.077

Wang, Z.; Zuo, J.; Zhang, X.; Jiang, G.; Feng, L. (2018) Stress-strain behaviour of hybrid-fibre engineered cementitious composite in compression. Adv. Cem. Res. 32 [2], 1-21.

Al-Gemeel, A.; Yan, Z.; Osama, Y. (2018) Use of hollow glass microspheres and hybrid fibres to improve the mechanical properties of engineered cementitious composite. Constr. Build. Mater. 171, 858-870. https://doi.org/10.1016/j.conbuildmat.2018.03.172

Cao, M.L.; Liu, Z.X.; Xie, C.P. (2020) Effect of steel-PVA hybrid fibers on compressive behavior of CaCO3 whiskers reinforced cement mortar. J. Build. Eng. 31, 101314. https://doi.org/10.1016/j.jobe.2020.101314

Xie, C.P.; Cao, M.L.; Si, W.; Khan, M. (2020) Experimental evaluation on fiber distribution characteristics and mechanical properties of calcium carbonate whisker modified hybrid fibers reinforced cementitious composites. Constr. Build. Mater. 265, 120292. https://doi.org/10.1016/j.conbuildmat.2020.120292

Cao, M.; Xie, C.; Guan, J. (2019) Fracture behavior of cement mortar reinforced by hybrid composite fiber consisting of CaCO3 whiskers and PVA-steel hybrid fibers. Compos. Part A-Appl. S. 120, 172-187. https://doi.org/10.1016/j.compositesa.2019.03.002

Li, L.; Cao, M.; Xie, C.; Yin, H. (2019) Effects of CaCO3 whisker, hybrid fiber content and size on uniaxial compressive behavior of cementitious composites. Struct. Concrete. 20 [1], 506-518. https://doi.org/10.1002/suco.201800185

Cao, M.L.; Xie, C.P.; Li, L.; Khan, M. (2019) Effect of different PVA and steel fiber length and content on mechanical properties of CaCO3 whisker reinforced cementitious composites. Mater. Construcc. 69 [336], e200. https://doi.org/10.3989/mc.2019.12918

Cao, M.L.; Xu, L.; Zhang, C. (2018) Rheological and mechanical properties of hybrid fiber reinforced cement mortar. Constr. Build. Mater. 171, 736-742. https://doi.org/10.1016/j.conbuildmat.2017.09.054

Cao, M.L.; Li, L. (2018) New models for predicting workability and toughness of hybrid fiber reinforced cement-based composites. Constr. Build. Mater. 176, 618-628. https://doi.org/10.1016/j.conbuildmat.2018.05.075

Cao, M.L.; Li, L.; Khan, M. (2018) Effect of hybrid fibers, calcium carbonate whisker and coarse sand on mechanical properties of cement-based composites. Mater. Construcc. 68 [330], e156. https://doi.org/10.3989/mc.2018.01717

Cao, M.L.; Li, L.; Zhang, C. (2018) Behaviour and damage assessment of a new hybrid-fibre-reinforced mortar under impact load. Mag. Concrete Res. 70 [17], 905-918. https://doi.org/10.1680/jmacr.16.00536

Li, L.; Cao, M. (2018) Influence of calcium carbonate whisker and polyvinyl alcohol-steel hybrid fiber on ultrasonic velocity and resonant frequency of cementitious composites. Constr. Build. Mater. 188, 737-746. https://doi.org/10.1016/j.conbuildmat.2018.08.154

Cao, M.L.; Xie, C.P.; Li, L. (2018) The relationship between reinforcing index and flexural parameters of new hybrid fiber reinforced slab. Comput. Concrete. 22 [5], 481-492.

Cao, M.L.; Zhang, C.; Li, Y.; Wei, J. (2015) Using calcium carbonate whisker in hybrid fiber-reinforced cementitious composites. J. Mater. Civil Eng. 27 [4], 1-13. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001041

Zhang, C.; Cao, M.L. (2014) Fiber synergy in multi-scale fiber-reinforced cementitious composites. J. Reinf. Plast. Comp. 33 [9], 862-874. https://doi.org/10.1177/0731684413514785

Cao, M.L.; Zhang, C.; Lv, H.F. (2014) Mechanical response and shrinkage performance of cementitious composites with a new fiber hybridization. Constr. Build. Mater. 57, 45-52. https://doi.org/10.1016/j.conbuildmat.2014.01.088

Ma, H.; Cai, J.M.; Lin, Z.; Qian, S.; Li, V.C. (2017) CaCO3 whisker modified engineered cementitious composite with local ingredients. Constr. Build. Mater. 151, 1-8. https://doi.org/10.1016/j.conbuildmat.2017.06.057

Pan, J.L.; Cai, J.M.; Ma, H.; Leung, C.K.Y. (2018) Development of multiscale fiber-reinforced engineered cementitious composites with PVA Fiber and CaCO3 whisker. J. Mater. Civil Eng. 30 [6], 04018106. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002305

Zhou, J.; Pan, J.; Leung, C. (2015) Mechanical behavior of fiber-reinforced engineered cementitious composites in uniaxial compression. J. Mater. Civil Eng. 27 [1], 1-10. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001034

Yu, K-Q.; Yu, J-T.; Dai, J-G.; Lu, Z-D.; Shah, S.P. (2018) Development of ultra-high performance engineered cementitious composites using polyethylene (PE) fibers. Constr. Build. Mater. 158, 217-227. https://doi.org/10.1016/j.conbuildmat.2017.10.040

Xu, S.; Cai, X. (2010) Experimental study and theoretical models on compressive properties of ultra-high toughness cementitious composites. J. Mater. Civil Eng. 22 [10], 1067-1077. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000109

Yun, H-D. (2013) Effect of accelerated freeze-thaw cycling on mechanical properties of hybrid PVA and PE fiber-reinforced strain-hardening cement-based composites (SHCCs). Compos. Part B-Eng. 52, 11-20. https://doi.org/10.1016/j.compositesb.2013.03.021

Lemaitre, J. (1984) How to use damage mechanics. Nucl. Eng. Des. 80 [2], 233-245. https://doi.org/10.1016/0029-5493(84)90169-9

Ezeldin, A.; Balaguru, P. (1992) Normal and high-strength fiber reinforced concrete under compression. J. Mater. Civil Eng. 4 [4], 415-429. https://doi.org/10.1061/(ASCE)0899-1561(1992)4:4(415)

Ou, Y-C.; Tsai, M-S.; Liu, K-Y.; Chang, K-C. (2012) Compressive behavior of steel-fiber-reinforced concrete with a high reinforcing index. J. Mater. Civil Eng. 24 [2], 207-215. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000372

Ning, X.; Ding, Y.; Zhang, F.; Zhang, Y. (2015) Experimental Study and prediction model for flexural behaviour of reinforced SCC beam containing steel fibers. Constr. Build. Mater. 93, 644-653 https://doi.org/10.1016/j.conbuildmat.2015.06.024

Publicado

2022-02-17

Cómo citar

Zhang, C. ., Yuan, Z. ., & Shen, Y. . (2022). Estudio experimental y modelo teórico de la relación tensión-deformación en compresión de SHCC reforzado con fibras multiescala. Materiales De Construcción, 72(345), e272. https://doi.org/10.3989/mc.2022.06021

Número

Sección

Artículos

Datos de los fondos

National Natural Science Foundation of China
Números de la subvención 51908247

State Key Laboratory for GeoMechanics and Deep Underground Engineering
Números de la subvención KFJJ202007