Desarrollo de un dispositivo de fuga de flujo magn tico como m todo no destructivo para la detecci n de refuerzos estructurales

Autores/as

DOI:

https://doi.org/10.3989/mc.2022.02421

Palabras clave:

Método de fuga de flujo magnético, Hormigón, Refuerzo de metal, Barras de refuerzo

Resumen


Las técnicas de medición no destructivas se utilizan para identificar componentes de construcción de ingeniería sin causar ningún efecto negativo en su uso futuro como componentes de construcción. Por el contrario, las técnicas convencionales sí provocan daños en la estructura. El método de fuga de flujo magnético (MFL) es una técnica no destructiva que se usa comúnmente para evaluar el estado físico de los materiales de construcción. En el marco de este estudio se produjo un dispositivo de fuga de flujo magnético para detectar las propiedades de los elementos constructivos de hormigón armado. El dispositivo de fuga de flujo magnético producido se utilizó para mediciones en 4 sistemas de prueba diferentes creados en laboratorio y se interpretaron los resultados obtenidos. Así, se reveló que la detección de armaduras en estructuras se puede realizar de forma más rápida y sin daños con el método MFL.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Karakuş, M.; Tütmez, B. (2006) Fuzzy and multiple regression modelling for evaluation of intact rock strength based on point load, Schmidt hammer and sonic velocity. Rock Mech. Rock Eng. 39 [1], 45-57. https://doi.org/10.1007/s00603-005-0050-y

Vasconcelos, G.; Lourenço, P.B.; Alves, C.A.; Pamplona, J. (2007) Prediction of the mechanical properties of granites by ultrasonic pulse velocity and Schmidt hammer hardness. North American Masonry Conference June 3-7 Missouri USA.

Sharma, P.K.; Singh, T.N. (2008) A correlation between P-wave velocity, impact strength index, slake durability index and uniaxial compressive strength. B. Eng. Geol. Environ. 67 [1], 17-22. https://doi.org/10.1007/s10064-007-0109-y

Kurtuluş, C.; Irmak, T.S.; Sertçelik, I. (2010) Physical and mechanical properties of Gokceada: Imbros (NE Aegean Sea) island andesites. B. Eng. Geol. Environ. 69 [2], 321-324. https://doi.org/10.1007/s10064-010-0270-6

Sharma, P.K.; Khandelwal, M.; Singh, T.N. (2011) A correlation between Schmidt hammer rebound numbers with impact Strength index, slake durability index and P-wave velocity. Int. J. Earth Sci. 100 [1], 189-195. https://doi.org/10.1007/s00531-009-0506-5

Fort, R.; de Buergo, M.A.; Perez-Monserrat, E.M. (2013) Non-destructive testing for the assessment of granite decay in heritage structures compared to quarry stone. Int. J. Rock. Mech. Min. 61, 296-305. https://doi.org/10.1016/j.ijrmms.2012.12.048

Pamuk, E.; Büyüksaraç, A. (2017) Investigation of strength characteristics of natural Stones in Ürgüp (Nevşehir/Turkey). Bitlis Eren Univ. J. Sci. Technol. 7 [2], 74-79. https://doi.org/10.17678/beuscitech.305653

Işık, E.; Bakış, A.; Akıllı, A.; Hattaoğlu, F. (2015) Usability of ahlat stone as aggregate in reactive powder concrete. Int. J. App. Sci. Eng. Res. 4 [4], 507-514.

Işık, E.; Büyüksaraç, A.; Avşar, E.; Kuluöztürk, M.F.; Günay, M. (2020) Characteristics and properties of Bitlis ignimbrites and their environmental implications. Mater. Construcc. 70 [338], e214. https://doi.org/10.3989/mc.2020.06519

Karahan, Ş.; Büyüksaraç, A.; Işık, E. (2020) The Relationship between concrete strengths obtained by destructive and non-destructive methods. Iran. J. Sci. Technol. Transact. Civ. Engineer. 44, 91-105. https://doi.org/10.1007/s40996-019-00334-3

Okolo, K.W. (2018) Modelling and experimental investigation of magnetic flux leakage distribution for hairline crack detection and characterization. Wolfson Centre for Magnetics School of Engineering, Cardiff University. (PhD Thesis). https://doi.org/10.1063/1.4994187

Rao, B.P.C. (2012) Magnetic flux leakage technique. J. Non Destr. Test. Eval. 11 [3], 7-17.

Li, L.; Huang, S.; Zheng, P.; Shi, K. (2002) Evaluation of surface cracks using magnetic flux leakage testing. J. Mater. Sci. Technol. 18 [4], 319-321.

Ramirez, A.R.; Mason, J.S.D.; Pearson, N. (2009) Experimental study to differentiate between top and bottom defects for MFL tank floor inspections. NDT&E Intern. 42 [1], 16-21. https://doi.org/10.1016/j.ndteint.2008.08.005

Sun, Y.; Kang, Y. (2010) A new MFL principle and method based on near-zero background magnetic field. NDT&E Intern. 43 [4], 348-353. https://doi.org/10.1016/j.ndteint.2010.01.005

Tsukada, K.; Yoshioka, M.; Kiwa; T.; Hirano, Y. (2011) A magnetic flux leakage method using a magnetoresistive sensor for non destructive evaluation of spot welds. NDT&E Intern. 44 [1], 101-105. https://doi.org/10.1016/j.ndteint.2010.09.012

Göktepe, M.; Perin, D. (2012) Inspection of rebars in concrete blocks. Int. J. Appl. Electromagn. Mech. 38 [2-3], 65-78. https://doi.org/10.3233/JAE-2012-1409

Loa, C.C.H.; Nakagawa, N. (2013) Evaluation of eddy current and magnetic techniques for inspecting rebars in bridge barrierrails. AIP Conf. Proc. 1511, 1371. https://doi.org/10.1063/1.4789202

Shi, Y.; Zhang, C.; Li, R.; Cai, M.; Jia, G. (2015) Theory and application of magnetic flux leakage pipeline detection. Sensors. 15 [2], 31036-31055. https://doi.org/10.3390/s151229845 PMid:26690435 PMCid:PMC4721765

Wu, D.; Liu, Z.; Wang, X.; Su, L. (2017) Composite magnetic flux leakage detection method for pipelines using alternating magnetic field excitation. NDT&E Intern. 91, 148-155. https://doi.org/10.1016/j.ndteint.2017.07.002

Wilcke, M.; Walther, A.; Szielasko, K.; Youssef, S. (2018) The MFL technique - Basic application for PT cable break detection in concrete structures. MATEC Web of Conferences 199, 06013 ICCRRR 2018. https://doi.org/10.1051/matecconf/201819906013

Antipov, A.G.; Markov, A.A. (2018) A new MFL principle and method based on near-zero background magnetic field. NDT&E Intern. 98, 177-185. https://doi.org/10.1016/j.ndteint.2018.04.011

Sadr, A.; Okhovat, R.S. (2016) Extracting the region of interest from MFL signals. Turk. J. Elec. Eng. Comp. Sci. 24, 427-434. https://doi.org/10.3906/elk-1305-70

Myakushev, K.; Slesarev, D.; Sukhorukov, D. (2018) Magnetic flux leakage (MFL) method for nondestructive testing of prestressed steel reinforcement strands. 12th European Conference on Non-Destructive Testing (ECNDT 2018), Gothenburg 2018, June 11-15 (ECNDT 2018).

Publicado

2022-02-22

Cómo citar

Bektaş, Ö. ., Kurban, Y. ., & Özboylan, B. . (2022). Desarrollo de un dispositivo de fuga de flujo magn tico como m todo no destructivo para la detecci n de refuerzos estructurales. Materiales De Construcción, 72(345), e273. https://doi.org/10.3989/mc.2022.02421

Número

Sección

Artículos

Datos de los fondos

Sivas Cumhuriyet Üniversitesi
Números de la subvención M-516