Efectos de la temperatura en la expansión del hormigón por la reacción álcali-sílice: una aproximación numérica simplificad

Autores/as

DOI:

https://doi.org/10.3989/mc.2022.17121

Palabras clave:

Temperatura, Reacción álcali-sílice, Expansión, Simulación numérica, Ensayo de prismas de hormigón

Resumen


Se evaluaron los efectos de la temperatura en el comportamiento expansivo del hormigón debido a la reacción álcali-sílice (ASR) mediante un análisis numérico simplificado. Los modelos numéricos se construyeron en base a la revisión de la literatura. Se implementó un modelo simplificado de daños para capturar las interacciones entre la viscoelsasticidad del gel (ASR) y el daño microestructural del árido y la pasta. Los parámetros del modelo de daños se identificaron mediante el ajuste de los resultados simulados a los datos experimentales. Los resultados indican que, para una determinada relación de reacción, la capacidad de expansión se reduce a temperaturas más altas durante las primeras y últimas etapas de la misma. Los resultados demuestran que la modelización explícita de las interacciones mecano-químicas es importante para conseguir predicciones numéricas precisas del comportamiento expansivo.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Kawabata, Y.; Yamada, K.; Ogawa, S. (2017) Modeling of environmental conditions and their impact on the expansion of concrete affected by alkali-silica reaction. In: Sellier, Grimal, Multon and Bourdarot (ed), Swelling Concrete in Dams and Hydraulic Structures, Wiley, 163-175.

Kawabata, Y.; Yamada, K.; Ogawa, S.; Martin, R P.; Seignol, J F.; Toutlemonde, F. (2016) Correlation between laboratory expansion and field expansion of concrete: Prediction based on modified concrete expansion test. Proc. of 15th Int. Conf. on Alkali-Aggregate Reaction, 15ICAAR2016_034.

Fournier, B.; Ideker, J.H.; Folliard, K.J.; Thomas, M.D.A.; Nkinamubanzi, P.C.; Chvrier, R. (2009) Effect of environmental conditions on expansion in concrete due to alkali-silica reaction (ASR). Mat. Charact. 60 [7], 669-679. https://doi.org/10.1016/j.matchar.2008.12.018

Lindgard, J.; Nixon, P.; Borchers, I.; Schouenborg, B.; Wigum, B.J.; Haugen, M.; Akesson, U. (2010) The EU "PARTNER" Project - European standard tests to prevent alkali reactions in aggregate: Final results and recommendations. Cem. Concr. Res. 40 [4], 611-635. https://doi.org/10.1016/j.cemconres.2009.09.004

Ideker, J.H.; Drimalas, T.; Bentivegna, A.F.; Folliard, K.J.; Fournier, B.; Thomas, M.D.A.; Hooton, R.D.; Rogers, C.A. (2012) The importance of outdoor exposure site testing. Proc. 14 th Inter. Conf. Alkali-Aggregate Reac. Concr. 051412-IDEK.

Larive, C. (1998) Apports Combinés de l'Expérimentation et de la Modélisation à la Compréhension de l'Alcali Reaction et de ses Effets Mécaniques Laboratoire Central des Ponts et Chaussées, OA28. (in French).

Kim, T.; Olek, J.; Jeong, H. (2015) Alkali-silica reaction: Kinetics of chemistry of pore solution and calcium hydroxide content in cementitious system. Cem. Concr. Res. 71, 36-45. https://doi.org/10.1016/j.cemconres.2015.01.017

Kawabata, Y.; Yamada, K.; Ogawa, S.; Sagawa, Y. (2018) Alkali-Wrapped Concrete Prism Test (AW-CPT) - New testing protocol toward a performance test against alkali-silica reaction-. J. Adv. Con. Tech. 16 [9], 441-460. https://doi.org/10.3151/jact.16.441

Swamy, R.S. (1991) The alkali-silica reaction in concrete, Blackie and Son Ltd. https://doi.org/10.4324/9780203036631

Chatterji, S.; Christensen, P. (1990) Studies of alkali-silica reaction. Part 7. Modelling of expansion. Cem. Concr. Res. 20 [2], 285-290. https://doi.org/10.1016/0008-8846(90)90082-9

Dunant, C.F. (2009) Experimental and modelling study of the alkali-silica-reaction in concrete, Ph.D thesis, École Polytechnique Fédérale de Lausanne.

Dunant, C.F.; Scrivener, K.L. (2010) Micro-mechanical modelling of alkali-silica-reaction-induced degradation using the AMIE framework. Cem. Concr. Res. 40 [4], 517-525. https://doi.org/10.1016/j.cemconres.2009.07.024

Giorla, A.B.; Scrivener, K.L.; Dunant, C.F. (2015) Influence of visco-elasticity on the stress development induced by alkali-silica reaction. Cem. Concr. Res. 70, 1-8. https://doi.org/10.1016/j.cemconres.2014.09.006

Multon, S.; Sellier, A. (2016) Multi-scale analysis of alkali-silica reaction (ASR): Impact of alkali leaching on scale effects affecting expansion tests. Cem. Concr. Res. 81, 122-123. https://doi.org/10.1016/j.cemconres.2015.12.007

Yang, L.; Pathirage, M.; Su, H.; Alnaggar, M.; Luzio, G.D.; Cusatis, G. (2021) Computational modeling of temperature and relative humidity effects on concrete expansion due to alkali-silica reaction. Cem. Concr. Compos. 124, 104237. https://doi.org/10.1016/j.cemconcomp.2021.104237

Takahashi, Y.; Ogawa, S.; Tanaka, Y.; Maekawa, K. (2016) Scale-dependent ASR expansion of concrete and its prediction coupled with silica gel generation and migration. J. Adv. Con. Tech. 14 [8], 444-463. https://doi.org/10.3151/jact.14.444

Comby-Peyrot, I.; Bernard, F.; Bouchard, P.O.; Bay, F.; Garcia-Diaz, E. (2009) Development and validation of a 3D computational tool to describe concrete behaviour at mesoscale. Application to the alkali-silica reaction. Comput. Mater. Sci. 46 [4], 1163-1177. https://doi.org/10.1016/j.commatsci.2009.06.002

Putatatsananon, W.; Saouma, V. (2013) Chemo-mechanical micromodel for alkali-silica reaction. ACI Mater. J., 110, 67-77. https://doi.org/10.14359/51684367

Miura, T.; Multon, S.; Kawabata, Y. (2021) Influence of the distribution of expansive sites in aggregates on the microscopic damage due to alkali-silica reaction (ASR) - insights into the mechanical origin of expansion-. Cem. Concr. Res. 142, 106355. https://doi.org/10.1016/j.cemconres.2021.106355

Sanchez, L.F.M.; Fournier, B.; Jolin, M.; Duchesne, J. (2015) Reliable quantification of AAR damage through assessment of the Damage Rating Index (DRI). Cem. Concr. Res. 67, 74-92. https://doi.org/10.1016/j.cemconres.2014.08.002

Kulug, P.; Wittman, F. (1969) Activation energy of creep of hardened cement paste. Mate. Construc. 2, 11-16. https://doi.org/10.1007/BF02473650

Furusawa, Y.; Uomoto, T. (1993) A kinetics based evaluation to the effect of environmental factors on alkali-silica reaction. JCA Pro. Cem. Concr. 47, 402-407. (in Japanese).

Kawabata, Y.; Dunant, C.; Yamada, K.; Kawakami, T. (2021) Influence of temperature on expansion due to the alkali-silica reaction and numerical modelling, First Book of Proceedings of the 16th International Conference on Alkali-Aggregate Reaction in Concrete, 225-236.

Lothenbach, B.; Matschei, T.; Möschner, G.; Glasser, F.P. (2008) Thermodynamic modelling of the effect of temperature on the hydration and porosity of Portland cement. Cem. Concr. Res. 38 [1], 1-18. https://doi.org/10.1016/j.cemconres.2007.08.017

Lindgård, J.; Sellevold, E.J.; Thomas, M.D.A.; Pedersen, B.; Justnes, H.; Rønning, T.F. (2013) Alkali-silica reaction (ASR) - performance testing Influence of specimen pre-treatment, exposure conditions and prism size on concrete porosity, moisture state and transport properties. Cem. Concr. Res. 53, 145-167. https://doi.org/10.1016/j.cemconres.2013.05.020

Furusawa, Y.; Ohga, H.; Uomoto, T. (1994) An analytical study concerning prediction of concrete expansion due to Alkali-Silica Reaction. Proceedings of 3rd CANMET/ACI International Conference on Durability of Concrete, 757-779.

Kawakami, T.; Sagawa, Y.; Kawabata, Y.; Yamada, K.; Ogawa, S. (2021) A study on ASR expansion behavior of concrete exposed to natural environment for 5 years: Experimental and numerical approaches, In: Bridge Maintenance, Safety, Management, Life-Cycle Sustainability and Innovations -Yokota & Frangopol (eds), 2637-2643. https://doi.org/10.1201/9780429279119-360

Kawabata, Y.; Yamada, K.; Ogawa, S.; Sagawa, Y. (2021) Mechanisms of internal swelling reactions: Recent advances and future research needs, In: Bridge Maintenance, Safety, Management, Life-Cycle Sustainability and Innovations -Yokota & Frangopol (eds), 2599-2607. https://doi.org/10.1201/9780429279119-355

Kawabata, Y.; Yamada, K. (2017) The mechanism of limited inhibition by fly ash on expansion due to alkali-silica reaction at the pessimum proportion. Cem. Concr. Res. 92, 1-15. https://doi.org/10.1016/j.cemconres.2016.11.002

Kawabata, Y.; Yamada, K. (2015) Evaluation of alkalinity of pore solution based on the phase composition of cement hydrates with supplementary cementitious materials and its relation to suppressing ASR expansion. J. Adv. Con. Tech. 13 [11], 538-553. https://doi.org/10.3151/jact.13.538

Kawabata, Y.; Yamada, K.; Igarashi, G.; Sagawa, Y. (2018) Effects of solution type on alkali release from volcanic aggregates -Is alkali release really responsible for accelerating ASR expansion? J. Adv. Con. Tech. 16 [1], 61-74. https://doi.org/10.3151/jact.16.61

Mitsubishi Research Institute, Inc. (2017) Project report of enhacing ageing management technical assessment FY2016 (Research on soundness evaluation of concrete structures in long term with respect to the Alkali Aggregate Reaction) (in Japanese).

Kawabata, Y.; Yamada, K.; Yanagawa, T.; Etoh, J. (2017) Modeling of ASR Expansion Behaviors of Concretes Tested by Accelerated Concrete Prism Test with Alkali-wrapping. Proceedings of the 12th JSMS Symposium on Concrete Structure Scenarios. 17, 491-496. (in Japanese).

Kawabata, Y.; Dunant, C.; Yamada, K.; Scrivever, K. (2019) Impact of temperature on expansive behavior of concrete with a highly reactive andesite due to the alkali-silica reaction. Cem. Concr. Res. 125, 105888. https://doi.org/10.1016/j.cemconres.2019.105888

Kawabata, Y.; Yamada, K.; Ogawa, S.; Sagawa, Y. (2019) Numerical simulation of the expansion behavior of field-exposed concrete blocks based on a modified concrete prism test. Proceedings of International Conference on Sustainable Materials, Systems and Structures (SMSS 2019) Durability, monitoring and repair of structures, 230-237.

Publicado

2022-04-26

Cómo citar

Kawabata, Y. ., Dunant, C. ., Nakamura, S. ., Yamada, K. ., & Kawakami, T. . (2022). Efectos de la temperatura en la expansión del hormigón por la reacción álcali-sílice: una aproximación numérica simplificad. Materiales De Construcción, 72(346), e282. https://doi.org/10.3989/mc.2022.17121

Número

Sección

Artículos

Datos de los fondos

Japan Society for the Promotion of Science
Números de la subvención 20H02227