Investigación de elementos de hormigón armado con pérdida de adherencia bajo carga de tracción

Autores/as

DOI:

https://doi.org/10.3989/mc.2023.297522

Palabras clave:

Pérdida de adherencia, Fisuras, Vigas de extremo entalladas, Análisis FEM, Pull out

Resumen


Frecuentemente, la pérdida de adherencia en las estructuras de hormigón armado (RC) está causada por el envejecimiento, factores ambientales, sobrecarga o diseño deficiente. Este deterioro puede hacer que la estructura pierda su estética y, finalmente, colapse. El comportamiento de las estructuras que exhiben deterioro de la adherencia es poco conocido y mal entendido. En este documento se presenta la respuesta de las estructuras RC que exhiben pérdida de adherencia bajo carga de tensión. Con el fin de comprender el impacto de la pérdida de adherencia en el compuesto RC, se construyó dicho sistema para ensayos “pullout” y, posteriormente, se expandió a la esquina de los extremos de las vigas entalladas de RC. Además, el sistema se examinó analíticamente utilizando FEmodel de 3 dimensiones. La pérdida de adherencia creó una zona débil con fisuras internas paralelas al eje de la barra. La sección de la punta se separó de toda la profundidad del extremo perforado, mientras que el refuerzo del gancho resistió las fisuras de tensión diagonal. Por lo tanto, la sección no entallada se debe tener más en cuenta durante el monitoreo y el mantenimiento.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Wu, Y.F.; Zhao, X.M. (2013) Unified bond stress-slip model for reinforced concrete. J. Struct. Eng. 139 [11], 1951-1962. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000747

Zhao, Y.; Lin, H. (2018) The bond behaviour between concrete and corroded reinforcement: state of the art. University of Leeds, Leeds, West Yorkshire, LS2 9JT, United Kingdom 63-73.3.Chu, S.H.; Kwan, A.K.H. (2018) A new method for pull out test of reinforcing bars in plain and fibre reinforced concrete. Eng. Struct. 164, 82-91. https://doi.org/10.1016/j.engstruct.2018.02.080

Li, X.; Lu, C.; Cui, Y.; Zhou, L. (2023). Study on the bond properties between steel bar and fiber reinforced concrete after high temperatures. Structures. 49, 889-902. Retrieved from https://www.sciencedirect.com/science/article/pii/S2352012423001637.5.Xu, L.; Hai, T.K.; King, L.C. (2014) Bond stress-slip prediction under pullout and dowel action in reinforced concrete joints. ACI Struct J. 111 [4], 977-988. https://doi.org/10.1016/j.istruc.2023.02.005

Fang, C.; Lundgren, K.; Chen, L.; Zhu, C. (2004) Corrosion influence on bond in reinforced concrete. Cem. Concr. Res. 34 [11], 2159-2167. https://doi.org/10.1016/j.cemconres.2004.04.006

Bamonte, P.F.; Gambarova, P.G. (2007) High-bond bars in nsc and hpc: study on size effect and on the local bond stress-slip law. J. Struct. Eng. 133, 225-234. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:2(225)

Yukimasa, G. (1971) Cracks formed in concrete around deformed tension bars. ACI Journal Proceedings. 68 [4], 244-251. https://doi.org/10.14359/11325

Rossetti, V.A.; Galeota, D.; Giammatteo, M.M. (1995) Local bond stress-slip relationships of glass fibre reinforced plastic bars embedded in concrete. Mater. Struct. 28, 340-344. https://doi.org/10.1007/BF02473149

Wu, C.; Chen, G.; Volz, J.S.; Brow, R.K.; Koenigstein, M.L. (2012). Local bond strength of vitreous enamel coated rebar to concrete. Constr. Build. Mater. 35, 428-439. https://doi.org/10.1016/j.conbuildmat.2012.04.067

Mousavi, S.S.; Guizani, L.; Ouellet-Plamondon, C.M. (2020) Simplified analytical model for interfacial bond strength of deformed steel rebars embedded in pre-cracked concrete. J. Struct. Eng. 146 [8]. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002687

Wang, X.H.; Chen, B.; Tang, P. (2018) Experimental and analytical study on bond strength of normal uncoated and epoxy-coated reinforcing bars. Constr. Build. Mater. 189, 612-628. https://doi.org/10.1016/j.conbuildmat.2018.09.010

Patel, V.J.; Van, B.C.; Henry, R.S.; Clifton, G.C. (2015) Effect of reinforcing steel bond on the cracking behaviour of lightly reinforced concrete members. Constr. Build. Mater. 96, 238-247. https://doi.org/10.1016/j.conbuildmat.2015.08.014

Lutz, L.A.; Gergely, P. (1967) Mechanics of Bond and Slip of Deformed Bars in Concrete. ACI J. Proceed. 64 [11], 711-721. https://doi.org/10.14359/7600

Chao, S.; Naaman, A.E.; Parra-Montesinos, G.J. (2009) Bond behavior of reinforcing bars in tensile strain-hardening fiber-reinforced cement composites. ACI Struct. J. 106 [6], 897-906. https://doi.org/10.14359/51663191

Quadri, A.I.; Fujiyama, C. (2021) Bond loss response of reinforced concrete dapped-end beam subjected to static and low cycle fatigue loading. Japan Concr. Inst. 43, 439-444.17.Quadri, A.I.; Fujiyama, C. (2021) Response of reinforced concrete dapped-end beams exhibiting bond deterioration subjected to static and cyclic loading. J. Adv. Concr. Technol. 19 [5], 536-554. https://doi.org/10.3151/jact.19.536

Tepfers, R.A. (1973) Theory of bond applied to overlapped tensile reinforcement splices for deformed bars. Publ 73, 2. Department of Concrete Structures, Chalmers University of Technology, Göteborg. 328-345.19.Somayaji, S.

Shah, S.P. (1981) Bond stress versus slip relationship and cracking response of tension members. ACI J. Proceed. 78 [3], 217-225. https://doi.org/10.14359/6920

Mata-Falcón, J.; Pallarés, L.; Miguel, P.F. (2019) Proposal and experimental validation of simplified strut-and-tie models on dapped-end beams. Eng. Struct. 183, 594-609. https://doi.org/10.1016/j.engstruct.2019.01.010

Shakir, Q.M. (2020) A review on structural behavior, analysis and design of RC dapped end beams. IOP Conf. Ser. Mater. Sci. Eng. 978, 012003. https://doi.org/10.1088/1757-899X/978/1/012003

Taher, S.D. (2005) Strengthening of critically designed girders with dapped ends. Proceedings of the Institution of Civil Engineers. Struc. Build. 158 [2], 141-152. https://doi.org/10.1680/stbu.2005.158.2.141

Shakir, Q.M. (2018) Reinforced concrete dapped end beams - state of the art. IJAS 1 [2], 44. https://doi.org/10.30560/ijas.v1n2p44

Shakir, Q.M.; Baneen, B.A. (2020) Retrofitting of self compacting RC half joints with internal deficiencies by CFRP fabrics. J. Teknol. 82 [6], 49-62. https://doi.org/10.11113/jurnalteknologi.v82.14416

Mattock, A.H. (2012) Strut-and-tie models for dapped-end beams. Concr. Inter. 34-36.26.Werner, M.P.

Dilger, W.H. (1973) Shear design of prestressed concrete stepped beams. PCI J. 18 [4], 37-49. https://doi.org/10.15554/pcij.07011973.37.49

Mattock, A.H.; Chan, T.C. (1979) Design and behavior of dapped-end beams. PCI J. 24 [6], 28-45. https://doi.org/10.15554/pcij.11011979.28.45

Aswin, M.; Mohammed, B.S.; Liew, M.S.; Syed, Z.I. (2015) Shear failure of RC dapped-end beams. Adv. Mater. Sci. Eng. 2015, 1-11. https://doi.org/10.1155/2015/309135

Wang, Q.; Guo, Z.; Hoogenboom, P.C.J. (2005) Experimental investigation on the shear capacity of RC dapped end beams and design recommendations. Struct. Eng. Mech. 21 [2], 221-235. https://doi.org/10.12989/sem.2005.21.2.221

Mohammed, B.S.; Aswin, M.; Liew, M.S.; Zawawi, N. (2019) Structural performance of RC and R-ECC dapped-end beams based on the role of hanger or diagonal reinforcements combined by ECC. Int. J. Concr. Struct. Mater. 13, 44. https://doi.org/10.1186/s40069-019-0356-x

Johnson, P. (2007) Report of the commission of inquiryinto the collapse of a portion of the de la Concordeoverpass. The Government of Quebec, Montréal, Canada.32.di Prisco, M.; Colombo, M.; Martinelli, P.; Coronelli, D. (2018) The technical causes of the collapse of Annone overpass on SS.36. Le cause tecniche del crollo del cavalcavia di Annone. 1-16.33.Spinella, N.; Messina, D. (2022) Load-bearing capacity of Gerber saddles in existing bridge girders by different levels of numerical analysis. Struct. Concr. 24 [1], 211-226. https://doi.org/10.1002/suco.202200279

Fujiyama, C.; Maekawa, K. (2011) A computational simulation for the damage mechanism of steel-concrete composite slabs under high cycle fatigue loads. J. Adv. Concr. Technol. 9 [2], 193-204. https://doi.org/10.3151/jact.9.193

Quadri, A.I.; Fujiyama, C. (2021) Numerical analysis of RC Gerber bridge girder subjected to fatigue loading. In: Yokota H, Frangopol DM (eds) Bridge maintenance, safety, management, life-cycle sustainability and innovations, 1st ed. CRC Press, 2682-2689.36.Quadri, A.I. (2023). Behavior of disturbed region of RC precast beams upgraded with near surface mounted CFRP fiber. Asian J. Civ. Eng. 24 [4], 1-15. https://doi.org/10.1007/s42107-023-00605-5

Rakhshanimehr, M.; Esfahani, M.R.; Kianoush, M.R.; Mohammadzadeh, B.A.; Mousavi, S.R. (2014) Flexural ductility of reinforced concrete beams with lap-spliced bars. Can. J. Civ. Eng. 41 [7], 594-604. https://doi.org/10.1139/cjce-2013-0074

Publicado

2023-08-10

Cómo citar

Quadri, A. (2023). Investigación de elementos de hormigón armado con pérdida de adherencia bajo carga de tracción. Materiales De Construcción, 73(351), e319. https://doi.org/10.3989/mc.2023.297522

Número

Sección

Artículos