Desarrollo de Cementos de Oxalato de Magnesio/Calcio

Autores/as

DOI:

https://doi.org/10.3989/mc.2023.298122

Palabras clave:

cemento, oxalato, escoria, magnesia, dióxido de carbon

Resumen


El cemento de oxalato de magnesio, una alternativa novedosa al cemento portland, puede fabricarse a temperatura ambiente haciendo reaccionar magnesia calcinada y sales de ácido oxálico. Dado que el ácido oxálico se puede fabricar utilizando dióxido de carbono capturado, los cementos de oxalato pueden incluso tener una huella de carbono negativa. Sin embargo, las emisiones relacionadas con la descarbonatación de la magnesita a altas temperaturas dificultan su consecución. Este estudio investiga el efecto de reemplazar la magnesia con escoria granulada de alto horno en algunas propiedades físicas y mecánicas, así como en la mineralogía y la microestructura de los cementos de oxalato. Whewellite y Weddellite se identifican cuando se utiliza escoria, además de Glushinskite que se forma a partir de magnesia. Los morteros solo con escoria experimentan reacciones más rápidas, pero menos completas y muestran una menor resistencia al agua que los correspondientes de oxalato de magnesio. Una combinación a partes iguales de magnesia calcinada y escoria proporciona la mayor resistencia a 28 días (> 35 MPa), pH~7 y alta resistencia al agua.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Mehta, P.K.; Monteiro, P.J.M. (2014) Concrete: microstructure, properties, and materials. fourth ed., McGraw-Hill Education, New York, USA.

Glasser, F.P.; Zhang, L. (2001) High-performance cement matrices based on calcium sulfoaluminate - belite compositions. Cem. Concr. Res. 31 [12], 1881-1886. https://doi.org/10.1016/S0008-8846(01)00649-4

Canbek, O.; Shakouri, S.; Erdoğan, S.T. (2020) Laboratory production of calcium sulfoaluminate cements with high industrial waste content. Cem. Concr. Compos. 106, 103475. https://doi.org/10.1016/j.cemconcomp.2019.103475

Scrivener, K.; Martirena, F.; Bishnoi, S.; Maity, S. (2018) Calcined clay limestone cements (LC3). Cem. Concr. Res. 114, 49-56. https://doi.org/10.1016/j.cemconres.2017.08.017

Aziz, A.; Driouich, A.; Bellil, A.; Ali, M.B.; Mabtouti, S.E.L.; Felaous, K.; Achab, M.; El Bouari, A. (2021) Optimization of new eco-material synthesis obtained by phosphoric acid attack of natural Moroccan pozzolan using Box-Behnken Design. Ceram. Int. 47 [23], 33028-33038. https://doi.org/10.1016/j.ceramint.2021.08.203

Pachideh, G.; Gholhaki, M.; Ketabdari, H. (2020) Effect of pozzolanic wastes on mechanical properties, durability and microstructure of the cementitious mortars. J. Build. Eng. 29, 101178. https://doi.org/10.1016/j.jobe.2020.101178

Sumesh, M.; Alengaram, U.J.; Jumaat, M.Z.; Mo, K.H.; Singh, R.; Nayaka, R.R.; Srinivas, K. (2021) Chemo-physico-mechanical characteristics of high-strength alkali-activated mortar containing non-traditional supplementary cementitious materials. J. Build. Eng. 44, 103368. https://doi.org/10.1016/j.jobe.2021.103368

Davidovits, J. (2008) Geopolymer chemistry and applications, third ed., Institut Géopolymère, St. Quentin, France.

Borštnar, M.; Daneu, N.; Dolenec, S. (2020) Phase development and hydration kinetics of belite-calcium sulfoaluminate cements at different curing temperatures. Ceram. Int. 46 [18], 29421-29428. https://doi.org/10.1016/j.ceramint.2020.05.029

Habert, G.; d'Espinose de Lacaillerie, J.B.; Roussel, N. (2011) An environmental evaluation of geopolymer based concrete production: reviewing current research trends. J. Clean. Prod. 19 [11], 1229-1238. https://doi.org/10.1016/j.jclepro.2011.03.012

Meyer, V.; de Cristofaro, N.; Bryant, J.; Sahu, S. (2018) Solidia cement an example of carbon capture and utilization. Key Eng. Mater. 761, 197-203. https://doi.org/10.4028/www.scientific.net/KEM.761.197

Carbon Built. Retrieved from: https://www.carbonbuilt.com (accessed 03 January 2023).

Criado, Y.A.; Arias, B.; Abanades, J.C. (2018) Effect of the carbonation temperature on the CO2 carrying capacity of CaO. Ind. Eng. Chem. Res. 57, 12595-12599. https://doi.org/10.1021/acs.iecr.8b02111

Niven, R.; Monkman, G.S.; Forgeron, D. (2012) US Patent 8,845,940 B2, Carbon dioxide treatment of concrete upstream from product mold. Retrieved from: https://patents.google.com/patent/US8845940B2/en.

Erdoğan, S.T.; Bilginer, B.A.; Canbek, O. (2022) Preparation and characterization of magnesium oxalate cement. Engrxiv. https://doi.org/10.31224/2298

Erdoğan, S.T. (2017) Oxalate acid-base cements as a means of carbon storage. American Geophysical Union Fall Meeting 2017, New Orleans, 11-15 December 2017.

Erdoğan, S.T. (2019) Magnesium oxalate cements for carbon reuse. American Geophysical Union Fall Meeting 2019, San Francisco, 9-13 December 2019.

İçinsel, N. (2020) Development of magnesium oxalate cements with recycled portland cement paste. M.S. Thesis, Middle East Technical University, Ankara, Turkey.

Liu, Y.; Chen, B. (2019) Research on the preparation and properties of a novel grouting material based on magnesium phosphate cement. Constr. Build. Mater. 214, 516-526. https://doi.org/10.1016/j.conbuildmat.2019.04.158

Haque, M.A.; Chen, B.; Maierdan, Y. (2022) Influence of supplementary materials on the early age hydration reactions and microstructural progress of magnesium phosphate cement matrices. J. Clean. Prod. 333, 130086. https://doi.org/10.1016/j.jclepro.2021.130086

Haque, M.A.; Chen, B.; Javed, M.F.; Jalal, F.E. (2022) Evaluating the mechanical strength prediction performances of fly ash-based MPC mortar with artificial intelligence approaches. J. Clean. Prod. 355, 131815. https://doi.org/10.1016/j.jclepro.2022.131815

Haque, M.A.; Chen, B.; Liu, Y.; Farasat Ali Shah, S.; Ahmad, M.R. (2020) Improvement of physico-mechanical and microstructural properties of magnesium phosphate cement composites comprising with Phosphogypsum. J. Clean. Prod. 261, 121268. https://doi.org/10.1016/j.jclepro.2020.121268

Yang, N.; Shi, C.; Yang, J.; Chang, Y. (2014) Research progresses in magnesium phosphate cement based materials. J. Mater. Civil Eng. 26 [10]. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000971

Mestres, G.; Ginebra, M.P. (2011) Novel magnesium phosphate cements with high early strength and antibacterial properties. Acta Biomater. 7 [4], 1853-1861. https://doi.org/10.1016/j.actbio.2010.12.008 PMid:21147277

Buj, I.; Torras, J.; Casellas, D.; Rovira, M.; de Pablo, J. (2009) Effect of heavy metals and water content on the strength of magnesium phosphate cements. J. Hazard. Mater. 170 [1], 345-350. https://doi.org/10.1016/j.jhazmat.2009.04.091 PMid:19473758

Yang, Q.; Zhu, B.; Wu, X. (2000) Characteristics and durability test of magnesium phosphate cement-based material for rapid repair of concrete. Mater. Struct. 33, 229-234. https://doi.org/10.1007/BF02479332

König, M.; Lin, S-H.; Vaes, J.; Pant, D.; Klemm, E. (2021) Integration of aprotic CO2 reduction to oxalate at a Pb catalyst into a GDE flow cell configuration. Faraday Discuss. 230, 360-374. https://doi.org/10.1039/D0FD00141D PMid:34259691

Meurs, J.H.H. Method of preparing oxalic acid. WO2016124646A1, 2016. Retrieved from https://patents.google.com/patent/WO2016124646A1/da.

Chen, A.; Lin, B.L. (2018) A simple framework for quantifying electrochemical CO2 fixation. Joule. 2 [4], 594-606. https://doi.org/10.1016/j.joule.2018.02.003

Subramanian, S.; Athira, K.R.; Kulandainathan, M.A. (2020) New insights into the electrochemical conversion of CO2 to oxalate at stainless steel 304 L cathode. J. CO 2 Util. 36, 105-115. https://doi.org/10.1016/j.jcou.2019.10.011

Fischer, J.; Lehmann, T.; Heitz, E. (1981) The production of oxalic-acid from CO2 and H2O. J. Appl. Electrochem. 11, 743-750. https://doi.org/10.1007/BF00615179

Ikeda, S.; Takagi, T.; Ito, K. (1987) Selective formation of formic acid, oxalic acid, and carbon monoxide by electrochemical reduction of carbon dioxide. Bull. Chem. Soc. Jpn. 60 [7], 2517-2522. https://doi.org/10.1246/bcsj.60.2517

Angamuthu, R.; Byers, P.; Lutz, M.; Spek, A.L.; Bouwman, E. (2010) Electrocatalytic CO2 conversion to oxalate by a copper complex. Science. 327 [5963], 313-315. https://doi.org/10.1126/science.1177981 PMid:20075248

Schuler, E.; Demetriou, M.; Shiju, N.R.; Gruter, G.J.M. (2021) Towards Sustainable Oxalic Acid from CO2 and Biomass. ChemSusChem. 14 [18], 3636-3664. https://doi.org/10.1002/cssc.202101272 PMid:34324259 PMCid:PMC8519076

Lide, D.R. (2007) CRC handbook of chemistry and physics, 88th ed., CRC Press, Florida, USA.

Kaufman, D.W.; Kelly, J.P.; Curhan, G.C.; Anderson, T.E.; Dretler, S.P.; Preminger, G.M.; Cave, D.R. (2008) Oxalobacter formigenes may reduce the risk of calcium oxalate kidney stones. J. Am. Soc. Nephrol. 19 [6], 1197-1203. https://doi.org/10.1681/ASN.2007101058 PMid:18322162 PMCid:PMC2396938

Ding, Z.; Fang, Y.; Su, J.F.; Hong, S.; Dong, B. (2020) In situ precipitation for the surface treatment and repair of cement-based materials. J. Adhes. Sci. Technol. 34 [11], 1233-1240.

Arvaniti, E.C.; Lioliou, M.G.; Paraskeva, C.A.; Payatakes, A.C.; Østvold, T.; Koutsoukos, P.G. (2010) Calcium oxalate crystallization on concrete heterogeneities. Chem. Eng. Res. Des. 88 [11], 1455-1460. https://doi.org/10.1016/j.cherd.2009.09.013

Luo, Z.; Ma, Y.; He, H.; Mu, W.; Zhou, X.; Liao, W.; Ma, H. (2021) Preparation and characterization of ferrous oxalate cement - A novel acid-base cement. J. Am. Ceram. Soc. 104 [2], 1120-1131. https://doi.org/10.1111/jace.17511

Liu, Y.; Chen, B. (2019) Research on the preparation and properties of a novel grouting material based on magnesium phosphate cement. Constr. Build. Mater. 214, 516-526. https://doi.org/10.1016/j.conbuildmat.2019.04.158

He, Z.H.; Zhu, H.N.; Shi, J.Y.; Li, J.; Yuan, Q.; Ma, C. (2022) Multi-scale characteristics of magnesium potassium phosphate cement modified by metakaolin. Ceram. Int. 48 [9], 12467-12475. https://doi.org/10.1016/j.ceramint.2022.01.112

Ding, Z.; Dong, B.; Xing, F.; Han, N.; Li, Z. (2012) Cementing mechanism of potassium phosphate based magnesium phosphate cement. Ceram. Int. 38 [8], 6281-6288. https://doi.org/10.1016/j.ceramint.2012.04.083

Ahmad, M.R.; Chen, B.; Yu, J. (2019) A comprehensive study of basalt fiber reinforced magnesium phosphate cement incorporating ultrafine fly ash. Compos. B. Eng. 168, 204-217. https://doi.org/10.1016/j.compositesb.2018.12.065

Bilginer, B.A. (2018) Development of magnesium potassium phosphate cement pastes and mortars incorporating fly ash. M.S. Thesis, Middle East Technical University, Ankara, Turkey.

ASTM C618. (2019) Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. ASTM International, West Conshohocken, Philadelphia, Pennsylvania, USA.

CEN 197-1. (2012) Cement - Part 1: Compositions and conformity criteria for common cements. Brussels, Belgium.

Brindley, G.W.; Hayami, R. (1965) Kinetics and mechanism of formation of forsterite (Mg2SiO4) by solid state reaction of MgO and SiO2. Phil. Mag. 12 [117], 505-514. https://doi.org/10.1080/14786436508218896

Benhelal, E.; Zahedi, G.; Shamsaei, E.; Bahadori, A. (2013) Global strategies and potentials to curb CO2 emissions in cement industry. J. Clean. Prod. 51, 142-161. https://doi.org/10.1016/j.jclepro.2012.10.049

ASTM C109. (2020) Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50 mm] cube specimens). ASTM International, West Conshohocken, Philadelphia, Pennsylvania, USA.

Mahyar, M. (2014) Room-temperature phosphate ceramics made with afşin-elbistan fly ash. M.S. Thesis, Middle East Technical University, Ankara, Turkey.

Bopegedera, A.M.R.P.; Nishanthi, K.; Perera, R. (2017) "Greening" a familiar general chemistry experiment: coffee cup calorimetry to determine the enthalpy of neutralization of an acid-base reaction and the specific heat capacity of metals. J. Chem. Educ. 94 [4], 494-499. https://doi.org/10.1021/acs.jchemed.6b00189

Ma, C.; Wang, F.; Zhou, H.; Jiang, Z.; Ren, W.; Du, Y. (2021) Effect of early-hydration behavior on rheological properties of borax-admixed magnesium phosphate cement. Constr. Build. Mater. 283, 122701. https://doi.org/10.1016/j.conbuildmat.2021.122701

Lutterotti, L. (2000) Maud: a rietveld analysis program designed for the internet and experiment integration. Acta Cryst. A. 56, s54. https://doi.org/10.1107/S0108767300021954

Yu, J.; Qian, J.; Wang, F.; Qin, J.H.; Dai, X.B.; You, C.; Jia, X.W. (2020) Study of using dolomite ores as raw materials to produce magnesium phosphate cement. Constr. Build. Mater. 253, 119147. https://doi.org/10.1016/j.conbuildmat.2020.119147

Gadd, G.M. (1999) Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Adv. Microb. Physiol. 42, 47-92. https://doi.org/10.1016/S0065-2911(08)60165-4 PMid:10500844

Chauhan, C.K.; Vyas, P.M.; Joshi, M.J. (2011) Growth and characterization of struvite-K crystal, Cryst. Res. Technol. 46 [2], 187-194. https://doi.org/10.1002/crat.201000587

Frost, R.L.; Weier, M.L. (2003) Thermal treatment of weddellite - a Raman and infrared emission spectroscopic study. Thermochim. Acta. 406 [1-2], 221-232. https://doi.org/10.1016/S0040-6031(03)00259-4

Stephens, W.E. (2012) Whewellite and its key role in living systems. Geol. Today. 28 [5], 180-185. https://doi.org/10.1111/j.1365-2451.2012.00849.x

Frost, R.L.; Adebajo, M.; Weier, M.L. (2004) A Raman spectroscopic study of thermally treated glushinskite--the natural magnesium oxalate dihydrate. Spectrochim. Acta A Mol. Biomol. Spectrosc. 60 [3], 643-651. https://doi.org/10.1016/S1386-1425(03)00274-9 PMid:14747090

Qiushi, Z.; Xing, C.; Rui, M.; Shichang, S.; Lin, F.; Junhao, L.; Juan, L. (2021) Solid waste-based magnesium phosphate cements: Preparation, performance and solidification/stabilization mechanism. Constr. Build. Mater. 297, 123761. https://doi.org/10.1016/j.conbuildmat.2021.123761

Gadd, G.M. (1999) Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Adv. Microb. Physiol. 41, 47-92. https://doi.org/10.1016/S0065-2911(08)60165-4 PMid:10500844

Chen, C.; Habert, G.; Bouzidi, Y.; Jullien, A. (2010) Environmental impact of cement production: detail of the different processes and cement plant variability evaluation. J. Clean. Prod. 18 [5], 478-485. https://doi.org/10.1016/j.jclepro.2009.12.014

Turek, M.; Gnot, W. (1995) Precipitation of magnesium hydroxide from brine. Ind. Eng. Chem. Res. 34, 244-250. https://doi.org/10.1021/ie00040a025

Retrieved from: https://www.alibaba.com/product-detail/Oxalic-Acid-Dihydrate-99-6-Price_11000003073704.html?s=p (accessed 3 January 2023).

Keith, D.W.; Holmes, G.; St. Angelo, D.; Heidel, K. (2018) A process for capturing CO2 from the atmosphere. Joule. 2 [8], 1573-1594. https://doi.org/10.1016/j.joule.2018.05.006

Retrieved from: https://www.alibaba.com/product-detail/Magnesium-Oxide-Magnesium-Oxide-Magnesium-Oxide_62443248013.html?spm=a2700.7735675.normal_offer.d_title.37124a0chvbcqw&s=p (accessed 3 January 2023).

Retrieved from: https://www.alibaba.com/product-detail/Hot-Sell-China-Granulated-Blast-Furnace_62180223076.html?spm=a2700.7724857.normal_offer.d_title.f9817524mgz5Sq (accessed 3 January 2023).

Federal reserve economic data, Federal Reserve Bank of St. Louis, Producer price index by industry: ready-mix concrete manufacturing: ready-mix concrete for west census region, St. Louis, MO. Retrieved from: https://fred.stlouisfed.org/series/PCU327320327320D (accessed 3 January 2023).

Publicado

2023-04-12

Cómo citar

Bilginer, B. A., & Erdoğan, S. T. . (2023). Desarrollo de Cementos de Oxalato de Magnesio/Calcio. Materiales De Construcción, 73(350), e310. https://doi.org/10.3989/mc.2023.298122

Número

Sección

Artículos