Modelización simplificada de las propiedades del hormigón con caucho empleando un análisis de regresión multivariable

Autores/as

DOI:

https://doi.org/10.3989/mc.2022.13621

Palabras clave:

Hormigón con caucho, Material estructural, Propiedades mecánicas, Correlaciones numéricas

Resumen


Los estudios sobre hormigón incorporando caucho han aumentado drásticamente en los últimos años debido a que es un material ecológico con un comportamiento de vibración mejorado y capacidades de disipación de energía. Sin embargo, múltiples trabajos en la literatura han indicado reducciones en sus propiedades mecánicas directamente proporcionales al contenido de caucho. En los últimos años se han propuesto varios modelos matemáticos para estimar las propiedades del hormigón con caucho utilizando inteligencia artificial, aprendizaje automático y métodos basados ​​en lógica difusa. Sin embargo, estos modelos son relativamente complicados y requieren mayores esfuerzos de cálculo que los de regresión multivariable en el día a día de los ingenieros. Además, la mayor parte de los estudios se han centrado principalmente en la resistencia a la compresión del hormigón con caucho y rara vez entran en más detalles considerando otras propiedades y tamaños de muestra. Por lo tanto, este estudio se centra en el desarrollo de modelos de regresión multivariable de hormigón con caucho, simples pero precisos, que se pueden generalizar para varias mezclas de hormigón de este tipo, considerando diferentes tamaños de muestra.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Yung, W.H.; Yung, L.C.; Hua, L.H. (2013) A study of the durability properties of waste tire rubber applied to self-compacting concrete. Constr. Build. Mater. 41, 665-672. https://doi.org/10.1016/j.conbuildmat.2012.11.019

Pelisser, F.; Zavarise, N.; Longo, T.A.; Bernardin, A.M. (2011) Concrete made with recycled tire rubber: Effect of alkaline activation and silica fume addition. J. Clean. Prod. 19, 757-763. https://doi.org/10.1016/j.jclepro.2010.11.014

Hassanli, R.; Youssf, O.; Mills, J.E. (2017) Experimental investigations of reinforced rubberized concrete structural members. J. Build. Eng. 10, 149-165. https://doi.org/10.1016/j.jobe.2017.03.006

Najim, K.B.; Hall, M.R. (2010) A review of the fresh/hardened properties and applications for plain- (PRC) and self-compacting rubberised concrete (SCRC). Constr. Build. Mater. 24, 2043-2051. https://doi.org/10.1016/j.conbuildmat.2010.04.056

Li, D.; Mills, J.; Benn, T.; Ma, X.; Gravina, R.; Zhuge, Y. (2016) Review of the performance of high-strength rubberized concrete and its potential structural applications. Adv. Civ. Eng. Mater. 5, 20150026. https://doi.org/10.1520/ACEM20150026

Thomas, B.S.; Gupta, R.C. (2016) A comprehensive review on the applications of waste tire rubber in cement concrete. Renew. Sust. Energ. Rev. 54, 1323-1333. https://doi.org/10.1016/j.rser.2015.10.092

Alam, I.; Mahmood, A.; Khattak, N. (2015) Use of rubber as aggregate in concrete: a review. Int. J. Adv. Struct. Geotech. Eng. 4, 2319-5347.

Xue, J.; Shinozuka, M. (2013) Rubberized concrete: A green structural material with enhanced energy-dissipation capability. Constr. Build. Mater. 42, 196-204. https://doi.org/10.1016/j.conbuildmat.2013.01.005

Skripkiūnas, G.; Grinys, A.; Miškinis, K. (2009) Damping properties of concrete with rubber waste additives. Mater. Sci. 15, 266-272.

Habib, A.; Yildirim, U.; Eren, O. (2020) Mechanical and dynamic properties of high strength concrete with well graded coarse and fine tire rubber. Constr. Build. Mater. 246, 118502. https://doi.org/10.1016/j.conbuildmat.2020.118502

Bisht, K.; Ramana, P.V. (2017) Evaluation of mechanical and durability properties of crumb rubber concrete. Constr. Build. Mater. 155, 811-817. https://doi.org/10.1016/j.conbuildmat.2017.08.131

Eldin, N.N.; Senouci, A.B. (1993) Rubber-tire particles as concrete aggregate. J. Mater. Civ. Eng. 5 [4], 478-496. https://doi.org/10.1061/(ASCE)0899-1561(1993)5:4(478)

Eldin, N.N.; Senouci, A.B. (1994) Measurement and prediction of the strength of rubberized concrete. Cem. Concr. Compos. 16 [4], 287-298. https://doi.org/10.1016/0958-9465(94)90041-8

Topçu, İ.B. (1995) The properties of rubberized concretes. Cem. Concr. Res. 25, 304-310. https://doi.org/10.1016/0008-8846(95)00014-3

Topçu, İ.B.; Sarıdemir, M. (2008) Prediction of rubberized concrete properties using artificial neural network and fuzzy logic. Constr. Build. Mater. 22, 532-540. https://doi.org/10.1016/j.conbuildmat.2006.11.007

Jalal, M.; Nassir, N.; Jalal, H.; Arabali, P. (2019) Retracted: On the strength and pulse velocity of rubberized concrete containing silica fume and zeolite: Prediction using multivariable regression models. Constr. Build. Mater. 223, 530-543. https://doi.org/10.1016/j.conbuildmat.2019.06.233

Bachir, R.; Mohammed, A.M.S.; Habib, T. (2018) Using artificial neural networks approach to estimate compressive strength for rubberized concrete. Period. Polytech. Chem. Eng. 62, 858-865. https://doi.org/10.3311/PPci.11928

Jalal, M.; Arabali, P.; Grasley, Z.; Bullard, J.W. (2020) Application of adaptive neuro-fuzzy inference system for strength prediction of rubberized concrete containing silica fume and zeolite. Proc. Inst. Mech. Eng. L P I Mech. Eng. L-J Mat. 234, 438-451. https://doi.org/10.1177/1464420719890370

Jalal, M.; Grasley, Z.; Gurganus, C.; Bullard, J.W. (2020) Retracted: Experimental investigation and comparative machine-learning prediction of strength behavior of optimized recycled rubber concrete. Constr. Build. Mater. 256, 119478. https://doi.org/10.1016/j.conbuildmat.2020.119478

Jalal, M.; Jalal, H. (2020) Retracted: Behavior assessment, regression analysis and support vector machine (SVM) modeling of waste tire rubberized concrete. J. Clean. Prod. 273, 122960. https://doi.org/10.1016/j.jclepro.2020.122960

Jalal, M.; Grasley, Z.; Gurganus, C.; Bullard, J.W. (2020) A new nonlinear formulation-based prediction approach using artificial neural network (ANN) model for rubberized cement composite. Eng. Comput. 38, 283-300. https://doi.org/10.1007/s00366-020-01054-3

Hadzima-Nyarko, M.; Nyarko, E.K.; Lu, H.; Zhu, S. (2020) Machine learning approaches for estimation of compressive strength of concrete. Eur. Phys. J. Plus. 135, 682. https://doi.org/10.1140/epjp/s13360-020-00703-2

Cheng, M.Y.; Cao, M.T. (2016) Estimating strength of rubberized concrete using evolutionary multivariate adaptive regression splines. J. Civ. Eng. Manag. 22, 711-720. https://doi.org/10.3846/13923730.2014.897989

Habib, A.; Yildirim, U. (2021) Prediction of the dynamic properties in rubberized concrete. Comput. Concr. 27, 185-197.

Zheng, L.; Sharon Huo, X.; Yuan, Y. (2008) Experimental investigation on dynamic properties of rubberized concrete. Constr. Build. Mater. 22, 939-947. https://doi.org/10.1016/j.conbuildmat.2007.03.005

Emiroglu, M.; Yildiz, S.; Kelestemur, M.H. (2015) A study on dynamic modulus of self-consolidating rubberized concrete. Comput. Concr. 15, 795-805. https://doi.org/10.12989/cac.2015.15.5.795

Moustafa, A.; ElGawady, M.A. (2017) Dynamic properties of high strength rubberized concrete. Am. Concr. Inst. ACI Spec. Publ. 314, 1-22.

Gupta, T.; Chaudhary, S.; Sharma, R.K. (2016) Mechanical and durability properties of waste rubber fiber concrete with and without silica fume. J. Clean. Prod. 112, 702-711. https://doi.org/10.1016/j.jclepro.2015.07.081

Noaman, A.T.; Abu Bakar, B.H.; Akil, H.M. (2017) Investigation on the mechanical properties of rubberized steel fiber concrete. Eng. Struct. Tech. 9, 79-92. https://doi.org/10.3846/2029882X.2017.1309301

Gurunandan, M.; Phalgun, M.; Raghavendra, T.; Udayashankar, B.C. (2019) Mechanical and damping properties of rubberized concrete containing polyester fibers. J. Mater. Civ. Eng. 31, 04018395. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002614

Jalal, M.; Grasley, Z.; Nassir, N.; Jalal, H. (2020) Retracted: Strength and dynamic elasticity modulus of rubberized concrete designed with ANFIS modeling and ultrasonic technique. Constr. Build. Mater. 240, 117920. https://doi.org/10.1016/j.conbuildmat.2019.117920

Najim, K.B.; Hall, M.R. (2012) Mechanical and dynamic properties of self-compacting crumb rubber modified concrete. Constr. Build. Mater. 27, 521-530. https://doi.org/10.1016/j.conbuildmat.2011.07.013

Li, N.; Long, G.; Ma, C.; Fu, Q.; Zeng, X.; Ma, K.; Xie, Y.; Luo, B. (2019) Properties of self-compacting concrete (SCC) with recycled tire rubber aggregate: A comprehensive study. J. Clean. Prod. 236, 117707. https://doi.org/10.1016/j.jclepro.2019.117707

Eldin, N.N.; Senouci, A.B. (1992) Engineering properties of rubberized concrete. Can. J. Civ. Eng. https://doi.org/10.1139/l92-103

Khaloo, A.R.; Dehestani, M.; Rahmatabadi, P. (2008) Mechanical properties of concrete containing a high volume of tire-rubber particles. Waste manag. 28, 2472-2482. https://doi.org/10.1016/j.wasman.2008.01.015 PMid:18372166

Mohammed, B.S. (2010) Structural behavior and m-k value of composite slab utilizing concrete containing crumb rubber. Constr. Build. Mater. 24, 1214-1221. https://doi.org/10.1016/j.conbuildmat.2009.12.018

Aiello, M.A.; Leuzzi, F. (2010) Waste tyre rubberized concrete: Properties at fresh and hardened state. Waste manag. 30, 1696-1704. https://doi.org/10.1016/j.wasman.2010.02.005 PMid:20207128

Raj, B.; Ganesan, N.; Shashikala, A.P. (2011) Engineering properties of self-compacting rubberized concrete. J. Reinf. Plast. Compos. 30, 1923-1930. https://doi.org/10.1177/0731684411431356

Bing, C.; Ning, L. (2014) Experimental research on properties of fresh and hardened rubberized concrete. J. Mater. Civ. Eng. 26, 04014040. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000923

Thomas, B.S.; Gupta, R.C.; Kalla, P.; Cseteneyi, L. (2014) Strength, abrasion and permeation characteristics of cement concrete containing discarded rubber fine aggregates. Constr. Build. Mater. 59, 204-212. https://doi.org/10.1016/j.conbuildmat.2014.01.074

Holmes, N.; Dunne, K.; O'Donnell, J. (2014) Longitudinal shear resistance of composite slabs containing crumb rubber in concrete toppings. Constr. Build. Mater. 55, 365-378. https://doi.org/10.1016/j.conbuildmat.2014.01.046

Elchalakani, M. (2015) High strength rubberized concrete containing silica fume for the construction of sustainable road side barriers. Structures. 1, 20-38. https://doi.org/10.1016/j.istruc.2014.06.001

Su, H.; Yang, J.; Ling, T-C.; Ghataora, G.S.; Dirar, S. (2015) Properties of concrete prepared with waste tyre rubber particles of uniform and varying sizes. J. Clean. Prod. 91, 288-296. https://doi.org/10.1016/j.jclepro.2014.12.022

Youssf, O.; Mills, J.E.; Hassanli, R. (2016) Assessment of the mechanical performance of crumb rubber concrete. Constr. Build. Mater. 125, 175-183. https://doi.org/10.1016/j.conbuildmat.2016.08.040

Thomas, B.S.; Gupta, R.C. (2016) Properties of high strength concrete containing scrap tire rubber. J. Clean. Prod. 113, 86-92. https://doi.org/10.1016/j.jclepro.2015.11.019

Mendis, A.S.M.; Al-Deen, S.; Ashraf, M. (2017) Behaviour of similar strength crumbed rubber concrete (CRC) mixes with different mix proportions. Constr. Build. Mater. 137, 354-366. https://doi.org/10.1016/j.conbuildmat.2017.01.125

Raffoul, S.; Garcia, R.; Escolano-Margarit, D.; Guadagnini, M.; Hajirasouliha, I.; Pilakoutas, K. (2017) Behaviour of unconfined and FRP-confined rubberised concrete in axial compression. Constr. Build. Mater. 147, 388-397. https://doi.org/10.1016/j.conbuildmat.2017.04.175

Bisht, K.; Ramana, P.V. (2017) Evaluation of mechanical and durability properties of crumb rubber concrete. Constr. Build. Mater. 155, 811-817. https://doi.org/10.1016/j.conbuildmat.2017.08.131

Achen, C.H. (1982) Interpreting and using regression, Vol. 29, Sage. https://doi.org/10.4135/9781412984560

Cui, W.; Mansour, A.E. (1998). Effects of welding distortions and residual stresses on the ultimate strength of long rectangular plates under uniaxial compression.Mar. Struct. 11. 251-269. https://doi.org/10.1016/S0951-8339(98)00012-4

Hu, B.; Cui, A.; Cui, K.; Liu, Y.; Li, J. (2021) A novel nonlinear creep model based on damage characteristics of mudstone strength parameters. Plos one. 16, e0253711. https://doi.org/10.1371/journal.pone.0253711 PMid:34166435 PMCid:PMC8224960

Kraft, D. Algorithm 733: (1994) TOMP-Fortran modules for optimal control calculations. ACM Trans. Math. Softw. 20, 262-281. https://doi.org/10.1145/192115.192124

Alibrahim, B.; Uygar, E. (2021) Nonlinear calculation method for one-dimensional compression of soils. Arab. J. Sci. Eng. 47, 4865-4877. https://doi.org/10.1007/s13369-021-06270-7

ACI318. (2019) ACI 318-19: Building code requirements for structural concrete and commentary; American Concrete Institute: Farmington Hills, USA.

ACI363. (2010) ACI 363R-10 Report on high-strength concrete; American Concrete Institute: Farmington Hills, USA.

ASTM. (2019) ASTM C192 Standard practice for making and curing concrete test specimens in the laboratory.

Jones, R. (1949) The non-destructive testing of concrete. Mag. Concr. Res. 1, 67-78. https://doi.org/10.1680/macr.1949.1.2.67

Goulias, D.G.; Ali, A.H. (1998) Evaluation of rubber-filled concrete and correlation between destructive and nondestructive testing results. Cem. Concr. Agg. 20, 140-144. https://doi.org/10.1520/CCA10447J

Lydon, F.D.; Balendran, R.V. (1986) Some observations on elastic properties of plain concrete. Cem. Concr. Res. 16, 314-324. https://doi.org/10.1016/0008-8846(86)90106-7

BSI. (1995) BS 8110-2 Structural use of concrete-Part 2: code of practice for special circumstance; British Standard Institute: London.

Publicado

2022-09-05

Cómo citar

Habib, A. ., & Yildirim, U. . (2022). Modelización simplificada de las propiedades del hormigón con caucho empleando un análisis de regresión multivariable. Materiales De Construcción, 72(347), e289. https://doi.org/10.3989/mc.2022.13621

Número

Sección

Artículos