Explorando el impacto del óxido de grafeno en las propiedades mecánicas y de durabilidad de los morteros que incorporan residuos de demolición: efectos en la estructura de micro y nano-poros
DOI:
https://doi.org/10.3989/mc.2023.351623Palabras clave:
Residuos de construcción y demolición, Nano-óxido de grafeno, Propiedades mecánicas, Porosidad, Ataque ácidoResumen
Este estudio explora el uso de residuos de construcción y demolición como árido fino en morteros. Se ha evaluado la adición de nano-óxido de grafeno (0.1%p). Se ha analizado la porosidad abierta usando absorción de agua, micro-porosidad con intrusión de Hg y nano-porosidad por absorción de N2, así como su resistencia a la flexión, compresión y resistencia al ataque ácido. Las propiedades mecánicas con arena estándar fueron mejores (30%) que, con árido reciclado, aunque los dos morteros pueden ser clasificados como M20. El volumen de macro y micro-poros disminuyó con nano-oxido de grafeno, lo que aumentó las propiedades mecánicas, especialmente cuando se utilizan agregados reciclados (30 % de la resistencia a la flexión para áridos reciclados y 4 % para áridos estándar). La adición de nano-oxido grafeno reduce los canales de transmisión de ácido dentro del mortero aumentando la resistencia a compresión tras el ataque ácido.
Descargas
Citas
Luo, J.; Chen, S.; Li, Q.; Liu, C.; Gao, S.; Zhang, J.; Guo, J. (2019) Influence of graphene oxide on the mechanical properties, fracture toughness, and microhardness of recycled concrete. Nanomat. 9 [3], 325. https://doi.org/10.3390/nano9030325 PMid:30823655 PMCid:PMC6473625
De Oliveira Andrade, J.J.; Possan, E.; Squiavon, J.Z.; Ortolan, T.L.P. (2018) Evaluation of mechanical properties and carbonation of mortars produced with construction and demolition waste. Constr. Build. Mater. 161, 70-83. https://doi.org/10.1016/j.conbuildmat.2017.11.089
Porras-Amores, C., Martin Garcia, P., Villoria Sáez, P., del Rio Merino, M.; Vitielo, V. (2021) Assessing the energy efficiency potential of recycled materials with construction and demolition waste: a spanish case study. Appl. Sci. 11 [17], 7809. https://doi.org/10.3390/app11177809
Directive (EU) 2018/851 of the European Parliament and the Council Amending Directive 2008/98/EC on waste. Off J. Eur. Union n.d.
Directive 2008/98/EC of the European Parliament and the Council on Waste. Off J. Eur. Union n.d.
European Commission. Protocol on the management of construction and demolition waste in the EU, September 2016. n.d.
Junta de Andalucía. Integrated waste plan for Andalusia. Towards a circular economy in the 2030 Horizon., PIRE 2030. 5 April 2021 n.d. Retrieved from https://www.juntadeandalucia.es/medioambiente/portal/documents/20151/26992369/2021_10_19_PIRec_completo5.pdf/6c1a646a-c293-79ca-c201-a913386b86ce?t=1634807843024.
CEDEX. Construction and demolition waste. Waste usable in construction. November 2014. Retrieved from https://www.cedexmateriales.es/upload/docs/es_RESIDUOSDECONSTRUCCIONYDEMOLICIONNOV2014.pdf.
Kabirifar, K.; Mojtahedi, M.; Wang, C.; Tam, V.W.Y. (2020) Construction and demolition waste management contributing factors coupled with reduce, reuse, and recycle strategies for effective waste management: A review. J. Clean. Prod. 263, 121265. https://doi.org/10.1016/j.jclepro.2020.121265
Bao, Z.; Lu, W. (2020) Developing efficient circularity for construction and demolition waste management in fast emerging economies: Lessons learned from Shenzhen, China. Sci. Total Environ. 724, 138264. https://doi.org/10.1016/j.scitotenv.2020.138264 PMid:32247127
CEDEX. Recycled aggregate from concrete. Retrieved from https://www.cedexmateriales.es/catalogo-de-residuos/34/reciclado-de-pavimentos-de-hormigon/
Zhou, Y.; Gong, G.; Huang, Y.; Chen, C.; Huang, D.; Chen, Z.; Guo, M. (2021) Feasibility of incorporating recycled fine aggregate in high performance green lightweight engineered cementitious composites. J. Clean. Prod. 280 [2], 124445. https://doi.org/10.1016/j.jclepro.2020.124445
Long, W.J.; Zheng, D., Duan, H.; Han, N.; Xing, F. (2018) Performance enhancement and environmental impact of cement composites containing graphene oxide with recycled fine aggregates. J. Clean. Prod. 194, 193-202. https://doi.org/10.1016/j.jclepro.2018.05.108
Shi, C.; Li, Y.; Zhang, J.; Li, W.; Chong, L.; Xie, Z. (2016) Performance enhancement of recycled concrete aggregate - A review. J. Clean. Prod. 112 [1], 466-472. https://doi.org/10.1016/j.jclepro.2015.08.057
EN 13139. (2003) Aggregates for mortar, European Committee for Standardization.
prEN 12620. (2002) Aggregates for concrete. European Committee for Standardization.
EN 13055-1. (2003) Lightweight aggregates - Part 1: Lightweight aggregates for concrete, mortar and grout. European Committee for Standardization.
prEN 13242. (2017) Aggregates for bituminous mixtures and surface treatments for roads, airfields and other trafficked areas. European Committee for Standardization.
Tobón, J.I.; Payá, J.; Restrepo, O.J. (2015) Study of durability of Portland cement mortars blended with silica nanoparticles. Constr. Build. Mater. 80, 92-97. https://doi.org/10.1016/j.conbuildmat.2014.12.074
Liu, J., Li, Q.; Xu, S. (2015) Influence of nanoparticles on fluidity and mechanical properties of cement mortar. Constr. Build. Mater. 101 [1], 892-901. https://doi.org/10.1016/j.conbuildmat.2015.10.149
Mohammed, A.; Sanjayan, J.G., Duan, W.H.; Nazari, A. (2015) Incorporating graphene oxide in cement composites: A study of transport properties. Constr. Build. Mater. 84, 341-347. https://doi.org/10.1016/j.conbuildmat.2015.01.083
Zhao, L.; Guo, X.; Song, L.; Song, Y.; Dai, G.; Liu, J. (2020) An intensive review on the role of graphene oxide in cement-based materials. Constr. Build. Mater. 241, 117939. https://doi.org/10.1016/j.conbuildmat.2019.117939
Wang, W.; Jian-Chen, S.; Sagoe-Crentsil, K.; Duan, W. (2022) Graphene oxide-reinforced thin shells for high-performance, lightweight cement composites. Composites Part B: Engineering 235, 109796. https://doi.org/10.1016/j.compositesb.2022.109796
Lv, S.; Ma, Y.; Qiu, C.; Sun, T.; Liu, J.; Zhou, Q. (2013) Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites. Constr. Build. Mater. 49, 121-127. https://doi.org/10.1016/j.conbuildmat.2013.08.022
Lv, S.; Ma, Y.; Qiu, C.; Zhou, Q. (2013) Regulation of GO on cement hydration crystals and its toughening effect. Mag. Concr. Res. 65 [20], 1246-1254. https://doi.org/10.1680/macr.13.00190
Lv, S.; Liu, J.; Sun, T.; Ma, Y.; Zhou, Q. (2014) Effect of GO nanosheets on shapes of cement hydration crystals and their formation process. Constr. Build. Mater. 64, 231-239. https://doi.org/10.1016/j.conbuildmat.2014.04.061
Li, W.; Li, X.; Chen, S.J.; Liu, Y.M.; Duan, W.H.; Shah, S.P. (2017) Effects of graphene oxide on early-age hydration and electrical resistivity of Portland cement paste. Constr. Build. Mater. 136, 506-514. https://doi.org/10.1016/j.conbuildmat.2017.01.066
Li, X.; Wang, L.; Liu, Y.; Li, W.; Dong, B.; Duan, W.H. (2018) Dispersion of graphene oxide agglomerates in cement paste and its effects on electrical resistivity and flexural strength. Cem. Concr. Compos. 92, 145-154. https://doi.org/10.1016/j.cemconcomp.2018.06.008
Li, X.; Li, C.; Liu, Y.; Chen, S.J.; Wang, C.M.; Sanjayan, J.G.; Duan, W.H. (2018) Improvement of mechanical properties by incorporating graphene oxide into cement mortar. Mech. Adv. Mater. Struct. 25 [15-16], 1313-1322. https://doi.org/10.1080/15376494.2016.1218226
Peng, H.; Ge, Y.; Cai, C.S.; Zhang, Y.; Liu, Z. (2019) Mechanical properties and microstructure of graphene oxide cement-based composites. Constr. Build. Mater. 194, 102-109. https://doi.org/10.1016/j.conbuildmat.2018.10.234
EN 197-1. (2011) Cement - Part 1: Composition, specifications and conformity criteria for common cements, European Committee for Standardization.
Leiva, C.; Solís-Guzmán, J.; Marrero, M.; García-Arenas, C. (2013) Recycled blocks with improved sound and fire insulation containing construction and demolition waste. Waste Manag. 33 [3], 663-671. https://doi.org/10.1016/j.wasman.2012.06.011 PMid:22784475
EN 12457-4. (2003) Characterisation of waste - Leaching - Compliance test for leaching of granular waste materials and sludges. Part 4: One stage batch test at a liquid to solid ratio of 10 l/kg for materials with particle size below 10 mm (without or with size reduction), European Committee for Standardization.
IMD 186. (2006) Individuazione dei rifiuti non pericolosi sottoposti alle procedure semplificate di recupero ai sensi degli articoli 31 e 33 del decreto legislativo 05/02/1997. Gazzetta Ufficiale n. 115.
EN 12859. (2012) Gypsum blocks. Definitions, requirements and test methods. European Committee for Standardization. Brussels, Belgium.
ASTM C642-21. (2021) Standard test method for density, absorption, and voids in hardened concrete. ASTM International (ASTM).
ASTM C348. (2021) Standard test method for flexural strength of hydraulic-cement mortars, ASTM International (ASTM).
EN 196-1. (2018) Methods of testing cement - Part 1: Determination of strength, European Committee for Standardization.
Cerulli, T.; Pistolesi, C.; Maltese, C.; Salvioni, D. (2003) Durability of traditional plasters with respect to blast furnace slag-based plaster. Cem. Concr. Res. 33 [9], 1375-1383. https://doi.org/10.1016/S0008-8846(03)00072-3
Arenas, C.; Luna-Galiano, Y.; Leiva, C.; Vilches, L.F.; Arroyo, F.; Villegas, R.; Fernandez-Pereira, C. (2017) Development of a fly ash-based geopolymeric concrete with construction and demolition wastes as aggregates in acoustic barriers. Constr. Build. Mater. 134, 433-442. https://doi.org/10.1016/j.conbuildmat.2016.12.119
Li, X.; Korayem, A.H.; Li, C.; Liu, Y.; He, H.; Sanjayan, J.G.; Duan, W.H. (2016) Incorporation of graphene oxide and silica fume into cement paste: A study of dispersion and compressive strength. Constr. Build. Mater. 123, 327-335. https://doi.org/10.1016/j.conbuildmat.2016.07.022
Horszczaruk, E.; Mijowska, E., Kalenczuk, R.J.; Aleksandrzak, M.; Mijowska, S. (2015) Nanocomposite of cement/graphene oxide - Impact on hydration kinetics and Young's modulus. Constr. Build. Mater. 78, 234-242. https://doi.org/10.1016/j.conbuildmat.2014.12.009
Ríos, J.D.; Leiva, C.; Ariza, M.P.; Seitl, S.; Cifuentes, H. (2019) Analysis of the tensile fracture properties of ultra-high-strength fiber-reinforced concrete with different types of steel fibers by X-ray tomography. Mater. Des. 165, 107582. https://doi.org/10.1016/j.matdes.2019.107582
Council Directive 1999/31/EC of 26 April (1999) On the landfill of waste. Official Journal L. 182, 16/07/1999 P. 0001 - 0019. European Commission (1999) http://data.europa.eu/eli/dir/1999/31/oj.
Ando, Y.; Shinichi, H.; Katayama, T.; Torii, K. (2022) Microscopic observations of sites and forms of ettringite in the microstructure of deteriorated concrete. Mater. Construcc. 72 (346), e283. https://doi.org/10.3989/mc.2022.15521
Basquiroto de Souza, F.; Shamsaei, E.; Sagoe-Crentsil, K.; Duan, W. (2022) Proposed mechanism for the enhanced microstructure of graphene oxide-Portland cement composites. J. Build. Eng. 54, 104604. https://doi.org/10.1016/j.jobe.2022.104604
Sharma, S.; Kothiyal, N.C. (2015) Influence of graphene oxide as dispersed phase in cement mortar matrix in defining the crystal patterns of cement hydrates and its effect on mechanical, microstructural and crystallization properties. RSC Adv. 65, 52642-52657. https://doi.org/10.1039/C5RA08078A
Long, W.J.; Wei, J.J.; Xing, F.; Khayat, K.H. (2018) Enhanced dynamic mechanical properties of cement paste modified with graphene oxide nanosheets and its reinforcing mechanism. Cem. Concr. Compos. 93, 127-39. https://doi.org/10.1016/j.cemconcomp.2018.07.001
Wang, M.; Wang, R.; Yao, H.; Farhan, S.; Zheng, S.; Du, C. (2016) Study on the three dimensional mechanism of graphene oxide nanosheets modified cement. Constr. Build. Mater. 126, 730-739. https://doi.org/10.1016/j.conbuildmat.2016.09.092
EN 998-2. (2018) Specification for mortar for masonry - Part 2: Masonry mortar. European Committee for Standardization.
Gómez-Cano, D.; Arias-Jaramillo, Y.P.; Bernal-Correa, R.; Tobón, J.I. (2023) Effect of enhancement treatments applied to recycled concrete aggregates on concrete durability: A review. Mater. Construcc. 73 [349], e308 https://doi.org/10.3989/mc.2023.296522
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.
Datos de los fondos
Junta de Andalucía
Números de la subvención US-1266248;P18-RT-1485