Un cemento bajo en carbono (LC3) como material sostenible en hormigón de alta resistencia: hormigón verde

Autores/as

DOI:

https://doi.org/10.3989/mc.2023.355123

Palabras clave:

Sostenibilidad, Cemento bajo en carbono, Resistencia, Resistividad, Absorción

Resumen


La tecnología de cemento de arcilla calcinada con piedra caliza (LC3) es un cemento con bajo contenido de carbono que combina piedra caliza, arcilla calcinada y clínker, con el objetivo de reducir las emisiones de CO2 en un 40 %-50 % durante la producción. En este estudio, se realizaron investigaciones a gran escala para explorar LC3 como un posible sustituto del cemento convencional (CC). Se realizaron pruebas mecánicas y de durabilidad al LC3, comparando resultados con los hormigones CC y Cemento con Puzolanas (PC). Los hallazgos revelaron que el hormigón LC3 exhibió una prometedora resistencia en la etapa inicial similar al hormigón CC. Sin embargo, a los 90 días, LC3 mostró una resistencia un 10 % mayor en comparación con el hormigón CC. Además, LC3 mostró un aumento notable del 45 % en la resistencia a la penetración de agua, lo que indica una mayor durabilidad que el hormigón CC. Estos resultados destacan la eficacia del cemento con bajo contenido de carbono en el desarrollo de cementos mixtos ternarios que ofrecen una resistencia temprana y una mayor durabilidad, lo que lo convierte en una alternativa ecológica viable en la industria de la construcción.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Schmidt, W.; Alexander, M.; John, V. (2018) Education for sustainable use of cement based materials. Cem. Concr. Res. 114, 103-114. https://doi.org/10.1016/j.cemconres.2017.08.009

Scrivener, K.; Martirena, F.; Bishnoi, S.; Maity, S. (2018) Calcined clay limestone cements (LC3). Cem. Concr. Res. 114, 49-56. https://doi.org/10.1016/j.cemconres.2017.08.017

Hanein, T.; Thienel, K.C.; Zunino, F.; Marsh, A.; Maier, M.; Wang, B.; Canut, M.; Juenger, M.C.; Ben Haha, M.; Avet, F.; Parashar, A. (2022) Clay calcination technology: state-of-the-art review by the RILEM TC 282-CCL. Mater. Struct. 55 [3], 1-29. https://doi.org/10.1617/s11527-021-01807-6

Pillai, R.G.; Gettu, R.; Santhanam, M.; Rengaraju, S.; Dhandapani, Y.; Rathnarajan, S.; Basavaraj, A.S. (2019) Service life and life cycle assessment of reinforced concrete systems with limestone calcined clay cement (LC3). Cem. Concr. Res. 118, 111-119. https://doi.org/10.1016/j.cemconres.2018.11.019

Berriel, S.S.; Favier, A.; Domínguez, E.R.; Machado, I.S.; Heierli, U.; Scrivener, K.; Hernández, F.M.; Habert, G. (2016) Assessing the environmental and economic potential of Limestone Calcined Clay Cement in Cuba. J. Clean. Prod. 124, 361-369. https://doi.org/10.1016/j.jclepro.2016.02.125

Sharma, M.; Bishnoi, S.; Martirena, F.; Scrivener, K. (2021) Limestone calcined clay cement and concrete: A state-of-the-art review. Cem. Concr. Res. 149, 106564. https://doi.org/10.1016/j.cemconres.2021.106564

Vizcaíno-Andrés, L. M.; Sánchez-Berriel, S.; Damas-Carrera, S.; Pérez-Hernández, A.; Scrivener, K. L.; Martirena-Hernández, J. F. (2015) Industrial trial to produce a low clinker, low carbon cement. Mater. Construcc. 65 [317], e045. https://doi.org/10.3989/mc.2015.00614

Díaz, Y.C.; Berriel, S.S.; Heierli, U.; Favier, A.R.; Machado, I.R.S.; Scrivener, K.L.; Hernández, J.F.M.; Habert, G. (2017) Limestone calcined clay cement as a low-carbon solution to meet expanding cement demand in emerging economies. Dev. Eng. 2, 82-91. https://doi.org/10.1016/j.deveng.2017.06.001

Bishnoi, S.; Maity, S.; Mallik, A.; Joseph, S.; Krishnan, S. (2014) Pilot scale manufacture of limestone calcined clay cement: the Indian experience. Indian Concr J. 77 [7], 22-28. https://www.researchgate.net/publication/316474228.

Yu, J.; Wu, H.L.; Mishra, D.K.; Li, G.; Leung, C.K.; (2020) Compressive strength and environmental impact of sustainable blended cement with high-dosage Limestone and Calcined Clay (LC2).J. Clean. Prod. 278, 123616. https://doi.org/10.1016/j.jclepro.2020.123616

Menéndez, G.; Bonavetti, V.L.; Irassar, E.F. (2006) Ternary blended cement concrete. Part I: early age properties and mechanical strength. Mater. Construcc. 56 [284], 55-67. https://doi.org/10.3989/mc.2006.v56.i284.18

Molina, F.L.; Fernández, Á.; Alonso, M.C. (2018) The influence of curing and aging on chloride transport through ternary blended cement concrete. Mater. Construcc. 68 [332], 4. https://doi.org/10.3989/mc.2018.11917

Menéndez, G.; Bonavetti, V.L.; Irassar, E.F.; (2007) Ternary blend cements concrete. Part II: Transport mechanism. Mater. Construcc. 57 [285], 31-43. https://doi.org/10.3989/mc.2007.v57.i285.37

Menéndez, G.; Bonavetti, V.L.; Irassar, E.F. (2007) Concretes with ternary composite cements. Part III: multicriteria optimization. Mater. Construcc. 57 [286], 19-28. https://doi.org/10.3989/mc.2007.v57.i286.44

Alonso, M.C.; García-Calvo, J.L.; Lothenbach, B. (2016) Influence of the synergy between mineral additions and Portland cement in the physical-mechanical properties of ternary binders. Mater. Construcc. 66 [324], e097. https://doi.org/10.3989/mc.2016.10815

Scrivener, K.; Avet, F.; Maraghechi, H.; Zunino, F.; Ston, J.; Hanpongpun, W.; Favier, A. (2018) Impacting factors and properties of limestone calcined clay cements (LC3).Green Mater.7 [1], 3-14. https://doi.org/10.1680/jgrma.18.00029

Ivanović, M.M.; Kljajević, L.M.; Nenadović, M.; Bundaleski, N.; Vukanac, I.; Todorović, B.Ž.; Nenadović, S.S. (2018) Physicochemical and radiological characterization of kaolin and its polymerization products. Mater. Construcc. 68 [330], e155. https://doi.org/10.3989/mc.2018.00517

Krishnan, S.; Emmanuel, A.C.; Bishnoi, S. (2019) Hydration and phase assemblage of ternary cements with calcined clay and limestone. Constr. Build. Mater. 222, 64-72. https://doi.org/10.1016/j.conbuildmat.2019.06.123

Ferreiro, S.; Canut, M.M.C.; Lund, J.; Herfort, D. (2019) Influence of fineness of raw clay and calcination temperature on the performance of calcined clay-limestone blended cements. Appl. Clay Sci. 169, 81-90. https://doi.org/10.1016/j.clay.2018.12.021

Emmanuel, A.C; Bishnoi, S. (2023) Effect of curing temperature and clinker content on hydration and strength development of calcined clay blends. Adv. Cem. Res. 35 [1], 12-25. https://doi.org/10.1680/jadcr.21.00197

Dhandapani, Y.; Sakthivel, T.; Santhanam, M.; Gettu, R.; Pillai, R.G. (2018) Mechanical properties and durability performance of concretes with limestone calcined clay cement (LC3). Cem. Concr. Res. 107, 136-151. https://doi.org/10.1016/j.cemconres.2018.02.005

Shah, V.; Parashar, A.; Mishra, G.; Medepalli, S.; Krishnan, S.; Bishnoi, S. (2020) Influence of cement replacement by limestone calcined clay pozzolan on the engineering properties of mortar and concrete. Adv. Cem. Res. 32 [3], 101-111. https://doi.org/10.1680/jadcr.18.00073

Ez-Zaki, H.; Marangu, J.M.; Bellotto, M.; Dalconi, M.C.; Artioli, G.; Valentini, L. (2021) A fresh view on limestone calcined clay cement (LC3) pastes. Mat. 14 [11], 3037. https://doi.org/10.3390/ma14113037 PMid:34204883 PMCid:PMC8199791

Avet, F.; Scrivener, K. (2018) Investigation of the calcined kaolinite content on the hydration of Limestone Calcined Clay Cement (LC3). Cem. Concr. Res. 107, 124-135. https://doi.org/10.1016/j.cemconres.2018.02.016

Zunino, F.; Scrivener, K. (2021) The reaction between metakaolin and limestone and its effect in porosity refinement and mechanical properties. Cem. Concr. Res. 140, 106307. https://doi.org/10.1016/j.cemconres.2020.106307

Dhandapani, Y.; Santhanam, M. (2017) Assessment of pore structure evolution in the limestone calcined clay cementitious system and its implications for performance. Cem. Con. Com. 84, 36-47. https://doi.org/10.1016/j.cemconcomp.2017.08.012

Indian Standard, I.S. 269 (2015) Specification of requirements of ordinary Portland cement. Bureau of Indian Standards, New Delhi, India. [Google Scholar]

IS 383, 2016. Coarse and fine aggregate for concrete-specification. Bur. Indian Standards, New Delhi, India. [Google Scholar]

ASTM, 2019. ASTM C494/C494M − 19: Standard specification for chemical admixtures for concrete. West Conshohocken, PA, USA.

Indian standards guidelines for design and development of different types of concrete mixes, IS 10262:2019. Bureau of Indian Standards, New Delhi. [Google Scholar]

Bureau of Indian Standards, Is 516 (Part-1 Sec-I) - 2021, Hardened Concrete -Methods of Test, Part 1: Testing of Strength of Hardened Concrete, Section 1: Compressive, Flexural and Split Tensile Strength, New Delhi. [Google Scholar]

Testing, A.S. 2020. Standard test method for field measurement of soil resistivity using the wenner four-electrode method. American Society for Testing and Materials, ASTM G 57-20,(2020) Annual Book of ASTM Standards, 3.

ASTM, C. 2022. Standard test method for electrical indication of concrete's ability to resist chloride ion penetration. C1202 − 22.

ASTM International, 2022. ASTM C876-22b Standard test method for corrosion potentials of uncoated reinforcing steel in concrete.

American Society for Testing and Materials (ASTM) (2013) Standard test method for measurement of rate of absorption of water by hydraulic-cement concretes, ASTM C1585-13, ASTM International, West Conshohocken, Pennsylvania.

ASTM C642-21, A. 2021. Standard test method for density, absorption, and voids in hardened concrete. ASTM International.

Kumar, R.; Bhattacharjee, B. (2003) Porosity, pore size distribution and in situ strength of concrete. Cem. Concr. Res. 33 [1], 155-164. https://doi.org/10.1016/S0008-8846(02)00942-0

Balshin, M.Y. (1949) Relation of mechanical properties of powder metals and their porosity and the ultimate properties of porous-metal ceramic materials. Dokl. Askd. Nauk SSSR, 67 [5], 831-834. [Google Scholar].

Hasselman DPH. (1969) Griffith flaws and the effect of porosity on tensile strength of brittle ceramics, Jou. Ame. Cer. Soc. 52[8], 457-457. https://doi.org/10.1111/j.1151-2916.1969.tb11982.x

Rossignolo, J.A. (2009) Interfacial interactions in concretes with silica fume and SBR latex. Con. Bui. Mat. 23 [2], 817-821. https://doi.org/10.1016/j.conbuildmat.2008.03.005

Ryshkevitch R. (1953) Compression strength of porous sintered alumina and zirconia. J. Am. Ceram. Soc. 36 [2], 65-68. https://doi.org/10.1111/j.1151-2916.1953.tb12837.x

Publicado

2023-11-03

Cómo citar

Sirangi, B., & Prasad, M. . (2023). Un cemento bajo en carbono (LC3) como material sostenible en hormigón de alta resistencia: hormigón verde. Materiales De Construcción, 73(352), e326. https://doi.org/10.3989/mc.2023.355123

Número

Sección

Artículos