Experimentación y análisis numérico de la influencia de las geomallas con inserción de emulsión en el comportamiento de los pavimentos bituminosos - Caso del aeródromo de Ouargla
DOI:
https://doi.org/10.3989/mc.2024.355723Palabras clave:
Pavimento asfáltico, Experimental, Modelización, Geomalla, HWDResumen
Este trabajo presenta un estudio experimental sobre un conjunto de 30 probetas, ensayadas a flexión en tres puntos, divididas en dos categorías. Con la inserción de geomallas y emulsiones catódicas, la primera categoría consta de 14 vigas prismáticas y la segunda de 16 probetas de losa prefisurada y reforzada. Se realizaron ensayos in situ con un deflectómetro pesado (HWD) en una pista flexible de un aeródromo situado en la ciudad de Ouragla (800 km al sureste de Argel), antes y después de su refuerzo. Este trabajo demostró, con una calibración numérica, que la geomalla con emulsión, mejora los desplazamientos y las tensiones aproximadamente un 30% y aumenta el módulo de elasticidad y el módulo de rotura (MOR) en un 60% y un 20%, respectivamente. El coeficiente de amortiguamiento (k) puede alcanzar el valor de 2 a 5, lo que aumenta la longevidad de un pavimento flexible reforzado.
Descargas
Citas
National Economic and Social Council (CNES). 2005. The development of road infrastructure: Needs for economical choice and better transport security in French. 25th pleinary session CNES Publication Algiers Algeria.
Public Transport Ministry (MTPT). Infrastructure General Directorate. 2019. Evaluation of Algerian road network in French.; Algiers Algeria.
Susanna A, Crispino M, Giustozzi F, Toraldo E. 2017. Deterioration trends of asphalt pavement friction and roughness from medium-term surveys on major Italian roads; Int. J. Pavement Res. Technol. 10(5):421-433. https://doi.org/10.1016/j.ijprt.2017.07.002
Abu El-Maaty AE. 2017. Temperature change implications for flexible pavement performance and life. Int. J. Transp. Eng. Technol. 3(1):1-11. https://doi.org/10.11648/j.ijtet.20170301.11
Chen Y, Wang H, Xu S, You Z. 2020. High modulus asphalt concrete: A state-of-the-art review. Constr. Build. Mater. 237:117653. https://doi.org/10.1016/j.conbuildmat.2019.117653
Lacalle-Jiménez HI, Edwards JP, Thom NH. 2017. Analysis of stiffness and fatigue resistance of cold recycled asphalt mixtures manufactured with foamed bitumen for their application to airfield pavement design. Mater. Construcc. 67(327):e127. https://doi.org/10.3989/mc.2017.04616
Perkins SW, Ismeik M. 1997. A synthesis and evaluation of geosynthetic-reinforced base layers in flexible pavements- Part I. Geosynth. Int. 4(6):549-604. https://doi.org/10.1680/gein.4.0106
Mirzapour Mounes S, Rehan Karim M, Khodaii A, Hadi Almasi H. 2014. Improving rutting resistance of pavement structures using geosynthetics- An overview. Hindawi Publishing Corporation. 2014:764218. https://doi.org/10.1155/2014/764218 PMid:24526919 PMCid:PMC3910378
Indraratna B, Khabbaz H, Salim W. 2012. A laboratory study on improvement of railway ballast using geosynthetics. Geotech. Eng. Transp. Projects. 617-626.
Giroud JP, Ah-Line C, Bonaparte R. 1984. Design of unpaved roads and trafficked areas with geogrids- polymer grid reinforcement A conference sponsored by SERC and Netlon Ltd. Thomas Telford London England 116-127.
Anderson P, Killeavy M. 1989. Geotextiles and Geogrids - Cost effective alternate materials for pavement design and construction. Proceedings of Geosynthetics '89 IFAI. San Diego California USA. 2:353-360.
Abdessemed M, Kenai S, Bali A. 2015. Experimental and numerical analysis of the behavior of an airport pavement reinforced by geogrids. Constr. Build. Mater. 94:547-554. https://doi.org/10.1016/j.conbuildmat.2015.07.037
Jasim AF, Fattah MY, Al-Saadi IF,Abbas AS. 2021. Geogrid reinforcement optimal location under different tire contact stress assumptions. Int. J. Pavement Res. Technol. 14:357-365. https://doi.org/10.1007/s42947-020-0145-6
Al-Qadi IL, Dessouky SH. Tutumluer E. 2008. Geogrid in flexible pavements: validated mechanism. Transportation Research Record: Transp. Res. Rec.: J. Transp. Res. Board. 2042 (1). https://doi.org/10.3141/2045-12
Abdessemed M, Khengaoui S, Kenai S. 2021. Diagnostic d'une infrastructure linéaire rigide - analyse expérimentale après renforcement par geogrilles. Acad. J. Civ. Eng. 38(2):144-148.
Austin RA, Gilchrist AJT. 1996. Enhanced performance of asphalt pavements using geocomposites. Geotext. Geomembr. 14(3-4):175-186. https://doi.org/10.1016/0266-1144(96)00007-6
Alimohammadi H. Zheng J, Schaefer VR, Siekmeier J, Velasquez R. 2021. Evaluation of geogrid reinforcement of flexible pavement performance: A review of large-scale laboratory studies. Transp. Geotech. 27(100471). https://doi.org/10.1016/j.trgeo.2020.100471
Abdessemed M, Bazzine R, Kenai S. (2022). Application of the synthetics geo-composites in the arid zones for rehabilitation of the flexible pavements road experimental analysis. In: Di Benedetto H, Baaj H, Chailleux E, Tebaldi G, Sauzéat C, Mangiafico S. (eds) Proceedings of the RILEM International Symposium on Bituminous Materials. ISBM 2020. RILEM Bookseries, Springer, Cham. 27:279-284. https://doi.org/10.1007/978-3-030-46455-4_35
Freire RA, Di Benedetto H, Sauzéat C, Pouget S, Lesueur D. 2021. Crack propagation analysis in bituminous mixtures reinforced by different types of geogrids using digital image correlation. Constr. Build. Mater. 303:124522. https://doi.org/10.1016/j.conbuildmat.2021.124522
Afnor Editions Normes NF EN 13108-1. 2008. Mélanges bitumineux - spécifications des matériaux - Partie 1: enrobés bitumineux 53 pages. Indice de classement: P 98-819-1, ICS: 93.080.20. Lavoisier France.
Total France Direction Bitumes. 2006. Caractéristiques techniques AZALT- Bitumes routiers de la norme NF EN 12591. Retrieved from https://services.totalenergies.fr/pro/produits-services/bitumes.
Afnor Editions Normes NF EN 13285. 2018. Graves non traitées - Spécifications Normes nationales et documents normatifs nationaux 30 pages France.
Afnor Editions Normes NF EN 13108-2. 2017. Mélanges bitumineux - Spécifications pour le matériau - Partie 2 : bétons bitumineux très minces BBTM. Normes Francaises et Europiènnes 26 pages France.
Correia NS, Zornberg JG. 2014. Influence of tack coat rate on the properties of paving geosynthetics. Transp. Geotech. 1(1):45-54. https://doi.org/10.1016/j.trgeo.2014.01.002
Zhang W. 2017. Effect of tack coat application on interlayer shear strength of asphalt pavement: A state-of-the-art review based on application in the United States. Int. J. Pavement Res. Technol. 10(5):434-445. https://doi.org/10.1016/j.ijprt.2017.07.003
Rahmani A. 2012. Experimental study of the behaviour of a flexible pavement reinforced with a glass fibre-based geogrid. Doctoral thesis. National School of Public Works, Algiers, [s.l.]: [s.n.]
Abdessemed M. Kenai S. 2016. Reduction of cracks in airport runways using geogrids. Scientific and technical study day on geosynthetic products ouargla Algeria.
Norme ISO 10319. 2015. Géo-synthétiques - Essai de traction des bandes larges.Edition 3. Comité technique ISO / TC 221 Produits géo-synthétiques ICS 59 080 70 Géotextiles.
Normes ISO 9864. 2005. Géosynthétiques - Méthode d'essai pour la détermination de la masse surfacique des géotextiles et produits apparentés Comité technique ISO/TC 221. Produits géosynthétiques ICS 59.080.70 Geotextiles.
Poulikakos LD, Pittet M, Dumont AG, Partl MN. 2015. Comparison of the two point bending and four point bending test methods for aged asphalt concrete field samples. Mater. Struct. 48:2901-2913. https://doi.org/10.1617/s11527-014-0366-8
Chen L, Qian Zh, Lu Q. 2013. Crack initiation and propagation in epoxy asphalt concrete in the three-point bending test. Road Mater. Pavement Des. 15(3):507-520. https://doi.org/10.1080/14680629.2014.908132
ASTM E2309/E2309M-20. 2020. Standard practices for verification of displacement measuring AFNOR Editions. American Standards ASTM, USA.
Afnor Editions Normes NF EN 12697-33. 2020. Mélanges bitumineux - Méthodes d'essai - Partie 33: préparation de corps d'épreuve au compacteur de plaque Normes nationales et documents normatifs nationaux. France.
Afnor Editions Normes NF EN 12697-35. 2017. Mélanges bitumineux - Essais - Partie 35 : malaxage de laboratoire Normes nationales et documents normatifs nationaux, France.
Afnor Editions Normes BS EN 12697-8. 2019. Matériaux enrobés. Méthodes d'essai Normes anglaises BSI ICS 93.080.20. Matériaux de construction des routes. France.
Saride S, Kumar VV. 2017. Influence of geosynthetic-interlayers on the performance of asphalt overlays on pre-cracked pavements. Geotext. Geomembr. 45(3):184-196. https://doi.org/10.1016/j.geotexmem.2017.01.010
Donovan P, Tutumluer R. 2009. Falling weight deflectometer testing to determine relative damage in asphalt pavement unbound aggregate layers. Transp. Res. Rec.: J. Transp. Res. Board. 2104(1):12-23. https://doi.org/10.3141/2104-02
Prayuda H, Kurniawati Djaha SI, Rahmawati H, Monika F, Adly E. 2021. Young's modulus and deflection assessment on pavement using a lightweight deflectometer Int. J. GEOMATE. 20(77):10-17. https://doi.org/10.21660/2020.77.06188
Public transport ministry 2010. Atlas Aéroportuaire/version Zéro, Direction des Infrastructures Aéroportuaires Alger Algérie.
Afitex Algeria in French. 2021. Production unit rocessing of non-metallic minerals wood and corkn Kharouba Boumerdes Algeria. Retrieved from http://www.afitexalgerie.com.
Pasquini E, Bocci M, Ferrotti G, Canestrari F. 2013. Laboratory characterisation and field validation of geogrid-reinforced asphalt pavements. Road Mater. Pavement Des. 14(1):17-35. https://doi.org/10.1080/14680629.2012.735797
San S, Khazanovich L. 2021. Reconsidering the strength of concrete pavements Int. J. Pavement Eng. 24(2). https://doi.org/10.1080/10298436.2021.2020270
Ingrassia LP, Virgili A, Canestrari F. 2020. Effect of geocomposite reinforcement on the performance of thin asphalt pavements: Accelerated pavement testing and laboratory analysis. Case Stud. Constr. Mater. 12:e00342. https://doi.org/10.1016/j.cscm.2020.e00342
Biligiri KP, Said S, Hakim S. 2012. Asphalt mixtures' crack propagation assessment using semi-circular bending tests. Int. J. Pavement Res. Technol. 5(4):209-217.
Ferrotti G, Canestrari F, Pasquini E, Virgili A. 2012. Experimental evaluation of the influence of surface coating on fiberglass geogrid performance in asphalt pavements. Geotext. Geomembr. 34:11-18. https://doi.org/10.1016/j.geotexmem.2012.02.011
Medjdoub A, Abdessemed M. 2023. Tests on the influence of cyclic loading and temperature on the behaviour of flexible pavement reinforced by geogrids with numerical simulation. Tehnički vjesnik. 30(2):521-529. https://doi.org/10.17559/TV-20220806010532
Zhao H, Cao J, Zheng Y. 2014. Investigation of the interface bonding between concrete slab and asphalt overlay. Road Mater. Pavement Des. 18(3):109-118. https://doi.org/10.1080/14680629.2017.1329866
Ragni D, Montillo T, Marradi A, Canestrari F. 2020. Fast falling weight accelerated pavement testing and laboratory analysis of asphalt pavements reinforced with geocomposites Proceedings of the 5th International Symposium on Asphalt Pavements & Environment APE. 417-430. https://doi.org/10.1007/978-3-030-29779-4_41
Picoux B, El Ayadi A, Petit C. 2009. Dynamic response of a flexible pavement submitted by impulsive loading. Soil Dyn. Earthq. Eng. 29(5):845-854. https://doi.org/10.1016/j.soildyn.2008.09.001
Ibrahim EM, El-Badawy SM, Ibrahim MH, Gabr A, Azam A. 2017. Effect of geogrid reinforcement on flexible pavements. Innov. Infrastruct. Solut. 2:54. https://doi.org/10.1007/s41062-017-0102-7
Banerjee S, Srivastava MVK, Manna B, Shahu JT. 2022. A novel approach to the designe of geogrid-reinforced flexible pavements. Int. J. Geosynth. Ground Eng. 8:29. https://doi.org/10.1007/s40891-022-00373-3
Noureddine O, Mouloud A, Fouad K. 2022. Static and dynamic behavior of concrete structures reinforced with nanotubes modified composites. Rev. Rom. Mater. 52(1):26-37.
Xie T, Qiu YJ. Jiang ZZ, Al CF. 2006. Study on compound type crack propagation behavior of asphalt concrete. Key Eng. Mater. 324-325:759-762. https://doi.org/10.4028/www.scientific.net/KEM.324-325.759
Correia NS, Esquivel ER, Zornberg JG. 2018. Finite-element evaluations of geogrid-reinforced asphalt overlays over flexible pavements. J. Transp. Eng. Part B: Pavements. 144(2):04018020. https://doi.org/10.1061/JPEODX.0000043
Rahman Md M, Saha S, Hamdi ASA, Bin Alam Md J. 2019. Development of 3-D finite element models for geo-jute reinforced flexible pavement. Civ. Eng. J. 5(2):437-446. https://doi.org/10.28991/cej-2019-03091258
Chang DTT, Ho NH, Yi Chang H, Yeh HSh. 1999. Laboratory and case study for geogrid-reinforced flexible pavement overlay. Transp. Res. Rec.: J. Transp. Res. Board. 1687(1):125-130 https://doi.org/10.3141/1687-14
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Puede consultar desde aquí la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.