Influencia del pretratamiento químico en la puzolanicidad de micropartículas de vidrio reciclado utilizadas en sustitución del cemento Portland

Autores/as

DOI:

https://doi.org/10.3989/mc.2024.362723

Palabras clave:

Cemento Portland, Mortero, Silicato de calcio hidratado (C-S-H), Portlandita, Puzolana, Partículas de vidrio

Resumen


Este estudio investigó la influencia del uso de micropartículas de vidrio tratadas químicamente como reemplazo parcial del cemento en pastas y morteros de cemento Portland. Las micropartículas se obtuvieron mediante la molienda de residuos de vidrio en tres fracciones de tamaño de partícula diferentes (< 75 µm, < 45 µm y < 25 µm), tratadas con hidróxido de calcio (CH) y caracterizadas mediante SEM/EDS y un analizador de tamaño de partícula láser. Las muestras preparadas con la incorporación de vidrio se caracterizaron mediante XRD, TGA/DTG y SEM/EDS. El tratamiento previo con hidróxido de calcio indujo la formación de C-S-H con diferentes morfologías en la superficie de las partículas, además de provocar cambios en la distribución del tamaño de partícula debido a la formación de aglomerados. Las pastas preparadas con partículas tratadas tenían menores cantidades de CH y niveles más altos de silicatos hidratados. Sin embargo, al medir indirectamente la puzolanicidad de las partículas tratadas a través de la resistencia a la compresión de los morteros, no se observaron diferencias significativas en las resistencias de los morteros hechos con partículas tratadas y no tratadas.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abbas A, Ekowati D, Suhariadi F, Fenitra RM. 2022. Health Implications, Leaders Societies, and Climate Change: A Global Review. In: Chatterjee U, Akanwa AO, Kumar S, Singh SK, Dutta Roy A. (eds) Ecological Footprints of Climate Change. Springer Climate. Springer, Cham. https://doi.org/10.1007/978-3-031-15501-7_26

Shi Q, Cai R, Huo T, You K, Cai W. 2023. A fairly and effectively analysis for the sharing of CO2 emissions reduction responsibility in China's provincial building sectors. Environ. Impact Assess. Rev. 99:106984. https://doi.org/10.1016/j.eiar.2022.106984

Zhou B, Zeng H, Zhao L, Han Z. 2023. Climate change and climate risks in the Guangdong-Hong Kong-Macau greater bay area. 173-193. https://doi.org/10.1007/978-981-19-7738-1_12

Salvetti F, Cavicchioli C, Borgarello M, Bertagni B. 2023. Time traveling towards a climate-neutral society: an interactive and immersive experience. 581:351-362. https://doi.org/10.1007/978-3-031-21569-8_33

Li Q, Qiao H, Li A, Li G. 2022. Performance of waste glass powder as a pozzolanic material in blended cement mortar. Constr. Build. Mater. 324:126531. https://doi.org/10.1016/j.conbuildmat.2022.126531

Ige OE, Olanrewaju OA, Duffy KJ, Collins OC. 2022. Environmental impact analysis of Portland cement (CEM1). Using the midpoint method. Energies. 15(7):2708. https://doi.org/10.3390/en15072708

Galusnyak SC, Petrescu L, Cormos CC. 2022. Environmental impact assessment of post-combustion CO2 capture technologies applied to cement production plants. J. Environ. Manage. 320:115908. https://doi.org/10.1016/j.jenvman.2022.115908 PMid:35961143

Hotta M, Tone T, Favergeon L, Koga N. 2022. Kinetic parameterization of the effects of atmospheric and self-generated carbon dioxide on the thermal decomposition of calcium carbonate. J. Phys. Chem. C. 126(18):7880-7895. https://doi.org/10.1021/acs.jpcc.2c01922

Tan C, Yu X, Guan Y. 2022. A technology-driven pathway to net-zero carbon emissions for China's cement industry. Appl. Energy. 325:119804. https://doi.org/10.1016/j.apenergy.2022.119804

Liu Z, Du J, Meng W. 2022. Achieving low-carbon cementitious materials with high mechanical properties using CaCO3 suspension produced by CO2 sequestration. J. Clean. Prod. 373:133546. https://doi.org/10.1016/j.jclepro.2022.133546

Qaidi S, Najm HM, Abed SM, Özkılıç YO, Al Dughaishi H, Alosta M, Sabri MM, Alkhatib F, Milad A. 2022. Concrete containing waste glass as an environmentally friendly aggregate: a review on fresh and mechanical characteristics. Mat. 15(18):6222. https://doi.org/10.3390/ma15186222 PMid:36143534 PMCid:PMC9501624

Shakouri M, Exstrom CL, Ramanathan S, Suraneni P, Vaux JS. 2020. Pretreatment of corn stover ash to improve its effectiveness as a supplementary cementitious material in concrete. Cem. Concr. Compos. 112:103658. https://doi.org/10.1016/j.cemconcomp.2020.103658

Hamada H, Alattar A, Tayeh B, Yahaya F, Thomas B. 2022. Effect of recycled waste glass on the properties of high-performance concrete: A critical review. Case Stud. Constr. Mater. 17:e01149. https://doi.org/10.1016/j.cscm.2022.e01149

Jiang X, Xiao R, Bai Y, Huang B, Ma Y. 2022. Influence of waste glass powder as a supplementary cementitious material (SCM). On physical and mechanical properties of cement paste under high temperatures. J. Clean. Prod. 340:130778. https://doi.org/10.1016/j.jclepro.2022.130778

Mosaberpanah MA, Eren O, Tarassoly AR. 2019. The effect of nano-silica and waste glass powder on mechanical, rheological, and shrinkage properties of UHPC using response surface methodology. J. Mater. Res. Technol. 8(1):804-811. https://doi.org/10.1016/j.jmrt.2018.06.011

de la Villa Mencía RV, Frías M, Ramírez SM, Carrasco LF, Giménez RG. 2022. Concrete/glass construction and demolition waste (CDW). Synergies in ternary eco-cement-paste mineralogy. Mat. 15(13):4661. https://doi.org/10.3390/ma15134661 PMid:35806784 PMCid:PMC9267239

Cadore BC, Ribeiro FRC, Modolo RCE, Pacheco F. 2023. Performance analysis of concrete with repurposed industrial glass waste. J. Build. Pathol. Rehabil. 8(1):1-13. https://doi.org/10.1007/s41024-022-00230-w

Guo P, Bao Y, Meng W. 2021. Review of using glass in high-performance fiber-reinforced cementitious composites. Cem. Concr. Compos. 120:104032. https://doi.org/10.1016/j.cemconcomp.2021.104032

Gupta J, Jethoo AS, Ramana PV. 2021. Valorization of soda lime glass in cement sand matrix. Mat. Today Proc. 49(5):1230-1238. https://doi.org/10.1016/j.matpr.2021.06.295

ABNT - Associação Brasileira de Normas Técnicas. 2015. NBR 5751: Pozzolanic materials: determination of pozzolanic activity with lime at seven days.

ABNT - Associação Brasileira de Normas. 2014. NBR 5752: Pozzolanic materials: determination of the performance index with Portland cement at 28 days.

Filho JH, Gobbi A, Pereira E, Quarcioni VA, De Medeiros MHF. 2017. Atividade pozolânica de adições minerais para cimento portland (Parte I): Índice de Atividade Pozolânica (IAP). Com Cal, Difração de Raios-X (DRX), Termogravimetria (TG/DTG). E chapelle modificado. Rev. Matéria. 22(3). https://doi.org/10.1590/s1517-707620170003.0206

Brekailo F, Pereira E, Pereira E, Filho JH, De Medeiros MHF. 2019. Evaluation of the reactive potential of additions of red ceramic Waste and Comminuted Concrete of CDW in cement matrix. Cerâmica. 65(375):351-358. https://doi.org/10.1590/0366-69132019653752552

Bouchikhi A, Benzerzour M, Abriak NE, Maherzi W, Mamindy-Pajany Y. 2019. Study of the impact of waste glasses types on pozzolanic activity of cementitious matrix. Constr. Build. Mater. 197:626-640. https://doi.org/10.1016/j.conbuildmat.2018.11.180

Chen Z, Wang Y, Liao S, Huang Y. 2020. Grinding kinetics of waste glass powder and its composite effect as pozzolanic admixture in cement concrete. Constr. Build. Mater. 239:117876. https://doi.org/10.1016/j.conbuildmat.2019.117876

Kalakada Z, Doh JH, Zi G. 2020. Utilisation of coarse glass powder as pozzolanic cement - A mix design investigation. Constr. Build. Mater. 240:117916. https://doi.org/10.1016/j.conbuildmat.2019.117916

Más-López MI, García del Toro EM, García-Salgado S, Alcala-Gonzalez D, Pindado S. 2021. Application of concretes made with glass powder binder at high replacement rates. Mat. 14(14): 3796. https://doi.org/10.3390/ma14143796 PMid:34300715 PMCid:PMC8303812

Borges AL, Soares SM, Freitas TOG, Junior AO, Ferreira EB, Ferreira FGS. 2021. Evaluation of the pozzolanic activity of glass powder in three maximum grain sizes. Mater. Res. 24(4). https://doi.org/10.1590/1980-5373-mr-2020-0496

Patel D, Shrivastava R, Tiwari RP, Yadav RK. 2021. The role of glass powder in concrete with respect to its engineering performances using two closely different particle sizes. Struct. Concr. 22(S1):E228-E244. https://doi.org/10.1002/suco.201900182

Omer B, Saeed J. 2022. Effect of water to binder ratio and particle size distribution of waste glass powder on the compressive-strength and modulus of elasticity of normal-strength concrete. Eur. J. Environ. Civ. Eng. 26(11):5300-5321. https://doi.org/10.1080/19648189.2021.1893227

Liu Y, Shi C, Zhang Z, Li N. 2019. An overview on the reuse of waste glasses in alkali-activated materials. Resour. Conserv. Recycl. 144:297-309. https://doi.org/10.1016/j.resconrec.2019.02.007

Maraghechi H, Maraghechi M, Rajabipour F, Pantano CG. 2014. Pozzolanic reactivity of recycled glass powder at elevated temperatures: Reaction stoichiometry, reaction products and effect of alkali activation. Cem. Concr. Compos. 53:105-114. https://doi.org/10.1016/j.cemconcomp.2014.06.015

Palomo A, Krivenko P, Garcia-Lodeiro I, Kavalerova E, Maltseva O, Fernández-Jiménez A. 2014. A review on alkaline activation: new analytical perspectives. Mater. Construcc. 64(315):e022. https://doi.org/10.3989/mc.2014.00314

Albiajawi MI, Embong R, Muthusamy K. 2021. An overview of the utilization and method for improving pozzolanic performance of agricultural and industrial wastes in concrete. Mat. Today Proc. 48(4):778-783. https://doi.org/10.1016/j.matpr.2021.02.260

Sun L, Zhu X, Kim M, Zi G. 2021. Alkali-silica reaction and strength of concrete with pretreated glass particles as fine aggregates. Constr. Build. Mater. 271:121809. https://doi.org/10.1016/j.conbuildmat.2020.121809

ABNT - Associação Brasileira de Normas Técnicas. 2015. NBR 7214: standard sand for cement tests: specification.

ABNT - Associação Brasileira de Normas Técnicas. 2019. NBR 7215: Portland cement: determination of compressive strength of cylindrical test specimens.

Nassiri S, Markandeya A, Haider MM, Valencia A, Rangelov M, Li H, Halsted A, Bollinger D, McCloy J. 2023. Technical and environmental assessment of hydrothermally synthesized foshagite and tobermorite-like crystals as fibrillar C-S-H seeds in cementitious materials. J. Sustain. Cement-Based Mater. 12(10):1181-1204. https://doi.org/10.1080/21650373.2023.2185828

Bellmann F, Scherer GW. 2018. Analysis of C-S-H growth rates in supersaturated conditions. Cem. Concr. Res. 103:236-244. https://doi.org/10.1016/j.cemconres.2017.05.007

Zhang Z, Scherer GW, Bauer A. 2018. Morphology of cementitious material during early hydration. Cem. Concr. Res. 107:85-100. https://doi.org/10.1016/j.cemconres.2018.02.004

de la V Mencía RV, Rojas MF, Martínez-Ramírez S, Fernández-Carrasco L, Cociña EV, García-Giménez R. 2021. Reactivity of binary construction and demolition waste mix as supplementary cementitious materials. Mat. 14(21):6481. https://doi.org/10.3390/ma14216481 PMid:34772011 PMCid:PMC8585279

Li W, Jiang C, Zhang Q, Li S. 2022. Evaluation of pozzolanic and alkali-activated reactivity of low-purity calcium bentonite. Mat. 15(22):8015. https://doi.org/10.3390/ma15228015 PMid:36431501 PMCid:PMC9696941

Bhatrola K, Kothiyal NC. 2023. Influence of (1D/2D. hybrid nanomaterials on the mechanical and durability properties of pozzolana portland cementitious mortar. J. Adhes. Sci. Technol. 38(2):288-312. https://doi.org/10.1080/01694243.2023.2226287

Yagüe S, González Gaya C, Rosales Prieto V, Sánchez Lite A. 2020. Sustainable ecocements: chemical and morphological analysis of granite sawdust waste as pozzolan material. Mat, 13(21):4941. https://doi.org/10.3390/ma13214941 PMid:33153195 PMCid:PMC7662646

.

Maraghechi H, Rajabipour F, Pantano CG, Burgos WD. 2016. Effect of calcium on dissolution and precipitation reactions of amorphous silica at high alkalinity. Cem. Concr. Res. 87:1-13. https://doi.org/10.1016/j.cemconres.2016.05.004

Tajuelo Rodriguez E, Garbev K, Merz D, Black L, Richardson IG. 2017. Thermal stability of C-S-H phases and applicability of Richardson and Groves' and Richardson C-(A)-S-H(I). models to synthetic C-S-H. Cem. Concr. Res. 93:45-56. https://doi.org/10.1016/j.cemconres.2016.12.005

ABNT - Associação Brasileira de Normas Técnicas. 2014. NBR 12653: Pozzolanic materials: requirements.

Bonavetti VL, Rahhal VF, Locati F, Irassar EF, Marfil S, Maiza P. 2020. Pozzolanic activity of argentine vitreous breccia containing mordenite. Mater. Construcc. 70(337):208. https://doi.org/10.3989/mc.2020.04019

Potapov VV, Efimenko YV, Gorev DS. 2019. Determination of the amount of Ca(OH)2 bound by additive nano-SiO2 in cement matrices. Nanotechnol. Constr. Sci. Internet-J. 11(4):415-432. https://doi.org/10.15828/2075-8545-2019-11-4-415-432

Barbero-Barrera MM, Gomez-Villalba LS, Ergenç D, Sierra-Fernández A, Fort R. 2022. Influence of curing conditions on the mechanical and hydric performance of air-lime mortars with nano-Ca(OH)2 and nano-SiO2 additions. Cem. Concr. Compos. 132:104631. https://doi.org/10.1016/j.cemconcomp.2022.104631

Frías M, Martínez-Ramírez S, de la Villa RV, Fernández-Carrasco L, García R. 2021. Reactivity in cement pastes bearing fine fraction concrete and glass from construction and demolition waste: Microstructural analysis of viability. Cem. Concr. Res. 148:106531. https://doi.org/10.1016/j.cemconres.2021.106531

Martins GLO, Fraga YSB, de Paula A, Rêgo JH da S, Terrades AM, Rojas MF. 2023. Analysis of the microstructure and porosity of cement pastes with functionalized nanosilica with different contents of aminosilane. Mat. 16(16):5675. https://doi.org/10.3390/ma16165675 PMid:37629966 PMCid:PMC10456893

Peng L, Zhao Y, Ban J, Wang Y, Shen P, Lu JX, Poon CS. 2023. Enhancing the corrosion resistance of recycled aggregate concrete by incorporating waste glass powder. Cem. Concr. Compos. 137:104909. https://doi.org/10.1016/j.cemconcomp.2022.104909

Rashad AM, Essa GMF, Abdel-Gawwad HA. 2022. An investigation of alkali-activated slag pastes containing recycled glass powder under the effect of elevated temperatures. Environ. Sci. Pollut. Res. 29(19):28647-28660. https://doi.org/10.1007/s11356-021-18365-7 PMid:34989987

Dobiszewska M, Pichór W, Tracz T, Petrella A, Notarnicola M. 2023. Effect of glass powder on the cement hydration, microstructure and mechanical properties of mortar. 10th MATBUD'23 Sci-Tech. Conf. 40. 13(1):40. https://doi.org/10.3390/materproc2023013040

Elaqra HA, Haloub MAA, Rustom RN. 2019. Effect of new mixing method of glass powder as cement replacement on mechanical behavior of concrete. Constr. Build. Mater. 203:75-82. https://doi.org/10.1016/j.conbuildmat.2019.01.077

Mejdi M, Wilson W, Saillio M, Chaussadent T, Divet L, Tagnit-Hamou A. 2022. Hydration and microstructure of glass powder cement pastes - A multi-technique investigation. Cem. Concr. Res. 151:106610. https://doi.org/10.1016/j.cemconres.2021.106610

Publicado

2024-05-23

Cómo citar

Barros Correia, J., Campos dos Santos, H., Bomfim Fraga, Y. ., & Oliveira, R. . (2024). Influencia del pretratamiento químico en la puzolanicidad de micropartículas de vidrio reciclado utilizadas en sustitución del cemento Portland. Materiales De Construcción, 74(354), e341. https://doi.org/10.3989/mc.2024.362723

Número

Sección

Artículos

Datos de los fondos

Conselho Nacional de Desenvolvimento Científico e Tecnológico
Números de la subvención 458216/2014-3

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Números de la subvención 88887487658/2020-00