Influencia del pretratamiento químico en la puzolanicidad de micropartículas de vidrio reciclado utilizadas en sustitución del cemento Portland
DOI:
https://doi.org/10.3989/mc.2024.362723Palabras clave:
Cemento Portland, Mortero, Silicato de calcio hidratado (C-S-H), Portlandita, Puzolana, Partículas de vidrioResumen
Este estudio investigó la influencia del uso de micropartículas de vidrio tratadas químicamente como reemplazo parcial del cemento en pastas y morteros de cemento Portland. Las micropartículas se obtuvieron mediante la molienda de residuos de vidrio en tres fracciones de tamaño de partícula diferentes (< 75 µm, < 45 µm y < 25 µm), tratadas con hidróxido de calcio (CH) y caracterizadas mediante SEM/EDS y un analizador de tamaño de partícula láser. Las muestras preparadas con la incorporación de vidrio se caracterizaron mediante XRD, TGA/DTG y SEM/EDS. El tratamiento previo con hidróxido de calcio indujo la formación de C-S-H con diferentes morfologías en la superficie de las partículas, además de provocar cambios en la distribución del tamaño de partícula debido a la formación de aglomerados. Las pastas preparadas con partículas tratadas tenían menores cantidades de CH y niveles más altos de silicatos hidratados. Sin embargo, al medir indirectamente la puzolanicidad de las partículas tratadas a través de la resistencia a la compresión de los morteros, no se observaron diferencias significativas en las resistencias de los morteros hechos con partículas tratadas y no tratadas.
Descargas
Citas
Abbas A, Ekowati D, Suhariadi F, Fenitra RM. 2022. Health Implications, Leaders Societies, and Climate Change: A Global Review. In: Chatterjee U, Akanwa AO, Kumar S, Singh SK, Dutta Roy A. (eds) Ecological Footprints of Climate Change. Springer Climate. Springer, Cham. https://doi.org/10.1007/978-3-031-15501-7_26
Shi Q, Cai R, Huo T, You K, Cai W. 2023. A fairly and effectively analysis for the sharing of CO2 emissions reduction responsibility in China's provincial building sectors. Environ. Impact Assess. Rev. 99:106984. https://doi.org/10.1016/j.eiar.2022.106984
Zhou B, Zeng H, Zhao L, Han Z. 2023. Climate change and climate risks in the Guangdong-Hong Kong-Macau greater bay area. 173-193. https://doi.org/10.1007/978-981-19-7738-1_12
Salvetti F, Cavicchioli C, Borgarello M, Bertagni B. 2023. Time traveling towards a climate-neutral society: an interactive and immersive experience. 581:351-362. https://doi.org/10.1007/978-3-031-21569-8_33
Li Q, Qiao H, Li A, Li G. 2022. Performance of waste glass powder as a pozzolanic material in blended cement mortar. Constr. Build. Mater. 324:126531. https://doi.org/10.1016/j.conbuildmat.2022.126531
Ige OE, Olanrewaju OA, Duffy KJ, Collins OC. 2022. Environmental impact analysis of Portland cement (CEM1). Using the midpoint method. Energies. 15(7):2708. https://doi.org/10.3390/en15072708
Galusnyak SC, Petrescu L, Cormos CC. 2022. Environmental impact assessment of post-combustion CO2 capture technologies applied to cement production plants. J. Environ. Manage. 320:115908. https://doi.org/10.1016/j.jenvman.2022.115908 PMid:35961143
Hotta M, Tone T, Favergeon L, Koga N. 2022. Kinetic parameterization of the effects of atmospheric and self-generated carbon dioxide on the thermal decomposition of calcium carbonate. J. Phys. Chem. C. 126(18):7880-7895. https://doi.org/10.1021/acs.jpcc.2c01922
Tan C, Yu X, Guan Y. 2022. A technology-driven pathway to net-zero carbon emissions for China's cement industry. Appl. Energy. 325:119804. https://doi.org/10.1016/j.apenergy.2022.119804
Liu Z, Du J, Meng W. 2022. Achieving low-carbon cementitious materials with high mechanical properties using CaCO3 suspension produced by CO2 sequestration. J. Clean. Prod. 373:133546. https://doi.org/10.1016/j.jclepro.2022.133546
Qaidi S, Najm HM, Abed SM, Özkılıç YO, Al Dughaishi H, Alosta M, Sabri MM, Alkhatib F, Milad A. 2022. Concrete containing waste glass as an environmentally friendly aggregate: a review on fresh and mechanical characteristics. Mat. 15(18):6222. https://doi.org/10.3390/ma15186222 PMid:36143534 PMCid:PMC9501624
Shakouri M, Exstrom CL, Ramanathan S, Suraneni P, Vaux JS. 2020. Pretreatment of corn stover ash to improve its effectiveness as a supplementary cementitious material in concrete. Cem. Concr. Compos. 112:103658. https://doi.org/10.1016/j.cemconcomp.2020.103658
Hamada H, Alattar A, Tayeh B, Yahaya F, Thomas B. 2022. Effect of recycled waste glass on the properties of high-performance concrete: A critical review. Case Stud. Constr. Mater. 17:e01149. https://doi.org/10.1016/j.cscm.2022.e01149
Jiang X, Xiao R, Bai Y, Huang B, Ma Y. 2022. Influence of waste glass powder as a supplementary cementitious material (SCM). On physical and mechanical properties of cement paste under high temperatures. J. Clean. Prod. 340:130778. https://doi.org/10.1016/j.jclepro.2022.130778
Mosaberpanah MA, Eren O, Tarassoly AR. 2019. The effect of nano-silica and waste glass powder on mechanical, rheological, and shrinkage properties of UHPC using response surface methodology. J. Mater. Res. Technol. 8(1):804-811. https://doi.org/10.1016/j.jmrt.2018.06.011
de la Villa Mencía RV, Frías M, Ramírez SM, Carrasco LF, Giménez RG. 2022. Concrete/glass construction and demolition waste (CDW). Synergies in ternary eco-cement-paste mineralogy. Mat. 15(13):4661. https://doi.org/10.3390/ma15134661 PMid:35806784 PMCid:PMC9267239
Cadore BC, Ribeiro FRC, Modolo RCE, Pacheco F. 2023. Performance analysis of concrete with repurposed industrial glass waste. J. Build. Pathol. Rehabil. 8(1):1-13. https://doi.org/10.1007/s41024-022-00230-w
Guo P, Bao Y, Meng W. 2021. Review of using glass in high-performance fiber-reinforced cementitious composites. Cem. Concr. Compos. 120:104032. https://doi.org/10.1016/j.cemconcomp.2021.104032
Gupta J, Jethoo AS, Ramana PV. 2021. Valorization of soda lime glass in cement sand matrix. Mat. Today Proc. 49(5):1230-1238. https://doi.org/10.1016/j.matpr.2021.06.295
ABNT - Associação Brasileira de Normas Técnicas. 2015. NBR 5751: Pozzolanic materials: determination of pozzolanic activity with lime at seven days.
ABNT - Associação Brasileira de Normas. 2014. NBR 5752: Pozzolanic materials: determination of the performance index with Portland cement at 28 days.
Filho JH, Gobbi A, Pereira E, Quarcioni VA, De Medeiros MHF. 2017. Atividade pozolânica de adições minerais para cimento portland (Parte I): Índice de Atividade Pozolânica (IAP). Com Cal, Difração de Raios-X (DRX), Termogravimetria (TG/DTG). E chapelle modificado. Rev. Matéria. 22(3). https://doi.org/10.1590/s1517-707620170003.0206
Brekailo F, Pereira E, Pereira E, Filho JH, De Medeiros MHF. 2019. Evaluation of the reactive potential of additions of red ceramic Waste and Comminuted Concrete of CDW in cement matrix. Cerâmica. 65(375):351-358. https://doi.org/10.1590/0366-69132019653752552
Bouchikhi A, Benzerzour M, Abriak NE, Maherzi W, Mamindy-Pajany Y. 2019. Study of the impact of waste glasses types on pozzolanic activity of cementitious matrix. Constr. Build. Mater. 197:626-640. https://doi.org/10.1016/j.conbuildmat.2018.11.180
Chen Z, Wang Y, Liao S, Huang Y. 2020. Grinding kinetics of waste glass powder and its composite effect as pozzolanic admixture in cement concrete. Constr. Build. Mater. 239:117876. https://doi.org/10.1016/j.conbuildmat.2019.117876
Kalakada Z, Doh JH, Zi G. 2020. Utilisation of coarse glass powder as pozzolanic cement - A mix design investigation. Constr. Build. Mater. 240:117916. https://doi.org/10.1016/j.conbuildmat.2019.117916
Más-López MI, García del Toro EM, García-Salgado S, Alcala-Gonzalez D, Pindado S. 2021. Application of concretes made with glass powder binder at high replacement rates. Mat. 14(14): 3796. https://doi.org/10.3390/ma14143796 PMid:34300715 PMCid:PMC8303812
Borges AL, Soares SM, Freitas TOG, Junior AO, Ferreira EB, Ferreira FGS. 2021. Evaluation of the pozzolanic activity of glass powder in three maximum grain sizes. Mater. Res. 24(4). https://doi.org/10.1590/1980-5373-mr-2020-0496
Patel D, Shrivastava R, Tiwari RP, Yadav RK. 2021. The role of glass powder in concrete with respect to its engineering performances using two closely different particle sizes. Struct. Concr. 22(S1):E228-E244. https://doi.org/10.1002/suco.201900182
Omer B, Saeed J. 2022. Effect of water to binder ratio and particle size distribution of waste glass powder on the compressive-strength and modulus of elasticity of normal-strength concrete. Eur. J. Environ. Civ. Eng. 26(11):5300-5321. https://doi.org/10.1080/19648189.2021.1893227
Liu Y, Shi C, Zhang Z, Li N. 2019. An overview on the reuse of waste glasses in alkali-activated materials. Resour. Conserv. Recycl. 144:297-309. https://doi.org/10.1016/j.resconrec.2019.02.007
Maraghechi H, Maraghechi M, Rajabipour F, Pantano CG. 2014. Pozzolanic reactivity of recycled glass powder at elevated temperatures: Reaction stoichiometry, reaction products and effect of alkali activation. Cem. Concr. Compos. 53:105-114. https://doi.org/10.1016/j.cemconcomp.2014.06.015
Palomo A, Krivenko P, Garcia-Lodeiro I, Kavalerova E, Maltseva O, Fernández-Jiménez A. 2014. A review on alkaline activation: new analytical perspectives. Mater. Construcc. 64(315):e022. https://doi.org/10.3989/mc.2014.00314
Albiajawi MI, Embong R, Muthusamy K. 2021. An overview of the utilization and method for improving pozzolanic performance of agricultural and industrial wastes in concrete. Mat. Today Proc. 48(4):778-783. https://doi.org/10.1016/j.matpr.2021.02.260
Sun L, Zhu X, Kim M, Zi G. 2021. Alkali-silica reaction and strength of concrete with pretreated glass particles as fine aggregates. Constr. Build. Mater. 271:121809. https://doi.org/10.1016/j.conbuildmat.2020.121809
ABNT - Associação Brasileira de Normas Técnicas. 2015. NBR 7214: standard sand for cement tests: specification.
ABNT - Associação Brasileira de Normas Técnicas. 2019. NBR 7215: Portland cement: determination of compressive strength of cylindrical test specimens.
Nassiri S, Markandeya A, Haider MM, Valencia A, Rangelov M, Li H, Halsted A, Bollinger D, McCloy J. 2023. Technical and environmental assessment of hydrothermally synthesized foshagite and tobermorite-like crystals as fibrillar C-S-H seeds in cementitious materials. J. Sustain. Cement-Based Mater. 12(10):1181-1204. https://doi.org/10.1080/21650373.2023.2185828
Bellmann F, Scherer GW. 2018. Analysis of C-S-H growth rates in supersaturated conditions. Cem. Concr. Res. 103:236-244. https://doi.org/10.1016/j.cemconres.2017.05.007
Zhang Z, Scherer GW, Bauer A. 2018. Morphology of cementitious material during early hydration. Cem. Concr. Res. 107:85-100. https://doi.org/10.1016/j.cemconres.2018.02.004
de la V Mencía RV, Rojas MF, Martínez-Ramírez S, Fernández-Carrasco L, Cociña EV, García-Giménez R. 2021. Reactivity of binary construction and demolition waste mix as supplementary cementitious materials. Mat. 14(21):6481. https://doi.org/10.3390/ma14216481 PMid:34772011 PMCid:PMC8585279
Li W, Jiang C, Zhang Q, Li S. 2022. Evaluation of pozzolanic and alkali-activated reactivity of low-purity calcium bentonite. Mat. 15(22):8015. https://doi.org/10.3390/ma15228015 PMid:36431501 PMCid:PMC9696941
Bhatrola K, Kothiyal NC. 2023. Influence of (1D/2D. hybrid nanomaterials on the mechanical and durability properties of pozzolana portland cementitious mortar. J. Adhes. Sci. Technol. 38(2):288-312. https://doi.org/10.1080/01694243.2023.2226287
Yagüe S, González Gaya C, Rosales Prieto V, Sánchez Lite A. 2020. Sustainable ecocements: chemical and morphological analysis of granite sawdust waste as pozzolan material. Mat, 13(21):4941. https://doi.org/10.3390/ma13214941 PMid:33153195 PMCid:PMC7662646
.
Maraghechi H, Rajabipour F, Pantano CG, Burgos WD. 2016. Effect of calcium on dissolution and precipitation reactions of amorphous silica at high alkalinity. Cem. Concr. Res. 87:1-13. https://doi.org/10.1016/j.cemconres.2016.05.004
Tajuelo Rodriguez E, Garbev K, Merz D, Black L, Richardson IG. 2017. Thermal stability of C-S-H phases and applicability of Richardson and Groves' and Richardson C-(A)-S-H(I). models to synthetic C-S-H. Cem. Concr. Res. 93:45-56. https://doi.org/10.1016/j.cemconres.2016.12.005
ABNT - Associação Brasileira de Normas Técnicas. 2014. NBR 12653: Pozzolanic materials: requirements.
Bonavetti VL, Rahhal VF, Locati F, Irassar EF, Marfil S, Maiza P. 2020. Pozzolanic activity of argentine vitreous breccia containing mordenite. Mater. Construcc. 70(337):208. https://doi.org/10.3989/mc.2020.04019
Potapov VV, Efimenko YV, Gorev DS. 2019. Determination of the amount of Ca(OH)2 bound by additive nano-SiO2 in cement matrices. Nanotechnol. Constr. Sci. Internet-J. 11(4):415-432. https://doi.org/10.15828/2075-8545-2019-11-4-415-432
Barbero-Barrera MM, Gomez-Villalba LS, Ergenç D, Sierra-Fernández A, Fort R. 2022. Influence of curing conditions on the mechanical and hydric performance of air-lime mortars with nano-Ca(OH)2 and nano-SiO2 additions. Cem. Concr. Compos. 132:104631. https://doi.org/10.1016/j.cemconcomp.2022.104631
Frías M, Martínez-Ramírez S, de la Villa RV, Fernández-Carrasco L, García R. 2021. Reactivity in cement pastes bearing fine fraction concrete and glass from construction and demolition waste: Microstructural analysis of viability. Cem. Concr. Res. 148:106531. https://doi.org/10.1016/j.cemconres.2021.106531
Martins GLO, Fraga YSB, de Paula A, Rêgo JH da S, Terrades AM, Rojas MF. 2023. Analysis of the microstructure and porosity of cement pastes with functionalized nanosilica with different contents of aminosilane. Mat. 16(16):5675. https://doi.org/10.3390/ma16165675 PMid:37629966 PMCid:PMC10456893
Peng L, Zhao Y, Ban J, Wang Y, Shen P, Lu JX, Poon CS. 2023. Enhancing the corrosion resistance of recycled aggregate concrete by incorporating waste glass powder. Cem. Concr. Compos. 137:104909. https://doi.org/10.1016/j.cemconcomp.2022.104909
Rashad AM, Essa GMF, Abdel-Gawwad HA. 2022. An investigation of alkali-activated slag pastes containing recycled glass powder under the effect of elevated temperatures. Environ. Sci. Pollut. Res. 29(19):28647-28660. https://doi.org/10.1007/s11356-021-18365-7 PMid:34989987
Dobiszewska M, Pichór W, Tracz T, Petrella A, Notarnicola M. 2023. Effect of glass powder on the cement hydration, microstructure and mechanical properties of mortar. 10th MATBUD'23 Sci-Tech. Conf. 40. 13(1):40. https://doi.org/10.3390/materproc2023013040
Elaqra HA, Haloub MAA, Rustom RN. 2019. Effect of new mixing method of glass powder as cement replacement on mechanical behavior of concrete. Constr. Build. Mater. 203:75-82. https://doi.org/10.1016/j.conbuildmat.2019.01.077
Mejdi M, Wilson W, Saillio M, Chaussadent T, Divet L, Tagnit-Hamou A. 2022. Hydration and microstructure of glass powder cement pastes - A multi-technique investigation. Cem. Concr. Res. 151:106610. https://doi.org/10.1016/j.cemconres.2021.106610
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.
Datos de los fondos
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Números de la subvención 458216/2014-3
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Números de la subvención 88887487658/2020-00