Investigación del empleo de ceniza de la combustión de aceite de palma y filler calizo en la fabricación de hormigones sostenibles de alta resistencia

Autores/as

DOI:

https://doi.org/10.3989/mc.2024.372324

Palabras clave:

Ceniza de aceite de palma, Filler de piedra caliza, Hormigón de alta resistencia, Puzolana de alto volumen, Hormigón bajo en CO2

Resumen


En este estudio se aborda la producción de hormigón con bajas emisiones de CO2. Por este motivo, se utilizaron dos materiales, a saber, ceniza de aceite de palma (POFA) y filler de piedra caliza (LP). Estos materiales se añadieron para llevar a cabo el reemplazo del cemento convencional tanto como fuera posible. Los resultados muestran que el hormigón que contiene un 60% en peso de POFA podría lograr los altos requisitos de resistencia de ACI 363R, a partir de los 28 días de edad. Al ampliar el nivel de sustitución al 70% en peso de aditivos, con la mezcla de 10% de LP + 60% de POFA se obtendrá una mayor resistencia a la compresión del hormigón, ya que este tenía un efecto menor en la deformación por contracción y de igual manera reducía la generación de calor en aproximadamente un 50% en comparación con el hormigón convencional. Además, el uso de POFA y LP es una buena opción para producir hormigón ecológico y lograr una aportación con el medio ambiente ya que reduce las emisiones de CO2 del hormigón en aproximadamente un 44–62% en comparación con el hormigón convencional de resistencia similar.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Gagg CR. 2014. Cement and concrete as an engineering material: An historic appraisal and case study analysis. Eng. Fail. Anal. 40: 114-140. https://doi.org/10.1016/j.engfailanal.2014.02.004

Schaefer CE, Kupwade-Patil K, Ortega M, Soriano C, Büyüköztürk O, White AE, Short MP. 2018. Irradiated recycled plastic as a concrete additive for improved chemo-mechanical properties and lower carbon footprint. Waste. Manag. 71:426-439. https://doi.org/10.1016/j.wasman.2017.09.033

Yap SP, Alengaram UJ, Mo KH, Jumaat MZ. 2017. High strength oil palm shell concrete beams reinforced with steel fibres. Mater. Construcc. 67(328): e142. https://doi.org/10.3989/mc.2017.11616

Suoware T, Edelugo S, Ugwu B, Amula E, DigitemieI. 2019. Development of flame retarded composite fiberboard for building applications using oil palm residue. Mater. Construcc. 69(335): e197. https://doi.org/10.3989/mc.2019.10418

Safiuddin M, Abdus Salam M, Jumaat MZ. 2011. Utilization of palm oil fuel ash in concrete: a review. J. Civ. Eng. Manag. 17(2): 234-247. https://doi.org/10.3846/13923730.2011.574450

Office of the Agricultural Economics [OAE]. 2022. Agricultural Statistics of Thailand crop, Palm oil product statistics year 2019. Retrieved From http://www.oae.go.th. (AccessedDecember,15 2023).

Tangchirapat W, Jaturapitakkul C, Kiattikomol K. 2009. Compressive strength and expansion of blended cement mortar containing palm oil fuel ash. J. Mater. Civ. Eng. 21(8): 426-431. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:8(426)

Jaturapitakkul C, Tangpagasit J, Songmue S, Kiattikomol K. 2011. Filler effect and pozzolanic reaction of ground palm oil fuel ash. Constr. Build. Mater. 25(11): 4287-4293. https://doi.org/10.1016/j.conbuildmat.2011.04.073

Zeyad AM, Johari MM, Tayeh BA, Yusuf MO. 2016. Efficiency of treated and untreated palm oil fuel ash as a supplementary binder on engineering and fluid transport properties of high-strength concrete. Constr. Build. Mater. 125: 1066-1079. https://doi.org/10.1016/j.conbuildmat.2016.08.065

Mujedu KA, Ab-Kadir MA, Ismail M. 2020. A review on self-compacting concrete incorporating palm oil fuel ash as a cement replacement. Constr. Build. Mater. 258: 119541. https://doi.org/10.1016/j.conbuildmat.2020.119541

Chalee W, Cheewaket T, Jaturapitakkul C. 2021. Enhanced durability of concrete with palm oil fuel ash in a marine environment. J. Mater. Res. Technol. 13: 128-137. https://doi.org/10.1016/j.jmrt.2021.04.061

Hamada HM, Thomas BS, Yahaya FM, Muthusamy K, Yang J, Abdalla JA, Hawileh RA. 2021. Sustainable use of palm oil fuel ash as a supplementary cementitious material: A comprehensive review. J. Build. Eng. 40: 102286. https://doi.org/10.1016/j.jobe.2021.102286

Liu S, Yan P, 2010. Effect of limestone powder on microstructure of concreteJ. Wuhan. Univ. Technol. Mater. Sci. Ed. 25(2):328-331. https://doi.org/10.1007/s11595-010-2328-5

Wang D, Shi C, Farzadnia N, Shi Z, Jia H. 2018. A review on effects of limestone powder on the properties of concrete. Constr. Build. Mater.192:153-166. https://doi.org/10.1016/j.conbuildmat.2018.10.119

Zhao L, He T, Niu M, Chang X, Wang L, Wang Y. 2024. Effect of Limestone Powder Mixing Methods on the Performance of Mass Concrete.Mater. 17(3): 617. https://doi.org/10.3390/ma17030617

Wang D, Shi C, Farzadnia N, Shi Z, Jia H, Ou Z. 2018. A review on use of limestone powder in cement-based materials: Mechanism, hydration and microstructures. Constr. Build. Mater.181: 659-672. https://doi.org/10.1016/j.conbuildmat.2018.06.075

Han K, Shu X, Ran Q, Shi J, Zhang Z. 2023. Understanding the mechanisms behind the effects of limestone powder on microstructure evolution of cement paste. J. Sustain. Cem. Based Mater. 12(8): 995-1008. https://doi.org/10.1080/21650373.2022.2144534

Ramezanianpour AA, Ghiasvand E, Nickseresht I, Mahdikhani M. Moodi F. 2009. Influence of various amounts of limestone powder on performance of Portland limestone cement concretes. Cem. Concr. Compos.31(10): 715-720. https://doi.org/10.1016/j.cemconcomp.2009.08.003

Bentz DP, Ardani A, Barrett T, Jones SZ, Lootens D, Peltz MA, Sato T, Stutzman PE, Tanesi J, Weiss WJ. 2015. Multi-scale investigation of the performance of limestone in concrete. Constr. Build. Mater. 75:1-10. https://doi.org/10.1016/j.conbuildmat.2014.10.042

Wang X-Y. 2018. Analysis of hydration and strength optimization of cement-fly ash-limestone ternary blended concrete. Constr. Build. Mater. 166: 130-140. https://doi.org/10.1016/j.conbuildmat.2018.01.058

Li C, Jiang L. 2020. Utilization of limestone powder as an activator for early-age strength improvement of slag concrete. Constr. Build. Mater. 253: 119257. https://doi.org/10.1016/j.conbuildmat.2020.119257

Kathirvel P, Saraswathy V, Karthik S, Sekar A. 2013. Strength and durability properties of quaternary cement concrete made with fly ash, rice husk ash and limestone powder. Arab. J. Sci. Eng. 38 (3): 589-598. https://doi.org/10.1007/s13369-012-0331-1

TIS 2888-18. 2018. Palm oil ash for use as an admixture in concrete. Thai Industrial Standards Institute. Bangkok; Thailand.

Bernal SA, Juenger MC, Ke X, Matthes W, Lothenbach B, De Belie N, Provis JL. 2017. Characterization of supplementary cementitious materials by thermal analysis. Mater. Struct. 50 (1):1-13. https://doi.org/10.1617/s11527-016-0909-2

ACI 363R. 2010. Report on High-Strength Concrete, ACI Committee. American Concrete Institute & International Organization for Standardization, Farmington Hills; Michigan.

ASTM C39-16. 2016. Standard test method for compressive strength of cylindrical concrete specimens. ASTM International, West Conshohocken; PA.

ASTM C469-14. 2014. Standard test method for static modulus of elasticity and poisson's ratio of concrete in compression, ASTM International, West Conshohocken; PA.

ASTM C157-17. 2017. Standard test method for length change of hardened cement mortar and concrete, ASTM International, West Conshohocken; PA.

Cordeiro GC, Toledo Filho RD, Tavares LM, and Fairbairn EMR. 2009. Ultrafine grinding of sugar cane bagasse ash for application as pozzolanic admixture in concrete. Cem. Concr. Res. 39(2): 110-115. https://doi.org/10.1016/j.cemconres.2008.11.005

TGO. 2022. Greenhouse gas emission factor: Emission factor. Thailand greenhouse gas management organization. Bangkok; Thailand.

Braga AM, Silvestre JD, de Brito J. 2017. Compared environmental and economic impact from cradle to gate of concrete with natural and recycled coarse aggregates. J. Clean. Prod. 162: 529-543. https://doi.org/10.1016/j.jclepro.2017.06.057

Turner LK, Collins FG. 2013. Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concreteConstr. Build. Mater. 43: 125-130. https://doi.org/10.1016/j.conbuildmat.2013.01.023

Kim Y-J, Leeuwen RV, Cho B-Y, Sriraman V, Torres A. 2018. Evaluation of the Efficiency of Limestone Powder in Concrete and the Effects on the Environment. Sustain. 10(2): 550. https://doi.org/10.3390/su10020550

Sripan T, Haruehansapong S, Kroehong W, Senawang W, Namarak C, Jaturapitakkul C, Tangchirapat W. 2024. Assessment of bonding strength of steel bar in recycled aggregate concrete containing ground palm oil fuel ash. Innov. Infrastruct. Solut. 9(3): 59. https://doi.org/10.1007/s41062-023-01360-x

Herath C, Gunasekara C, Law DW, Setunge S. 2020. Performance of high volume fly ash concrete incorporating additives: A systematic literature review. Constr. Build. Mater. 258: 120606. https://doi.org/10.1016/j.conbuildmat.2020.120606

Chindaprasirt P, Kroehong W, Damrongwiriyanupap N, Suriyo W, Jaturapitakkul C. (2020) Mechanical properties, chloride resistance and microstructure of Portland fly ash cement concrete containing high volume bagasse ash. J. Build. Eng. 31:101415. https://doi.org/10.1016/j.jobe.2020.101415

Klathae T, Tran TNH, Men S, Jaturapitakkul C, Tangchirapat W. 2021. Strength, chloride resistance, and water permeability of high volume sugarcane bagasse ash high strength concrete incorporating limestone powder. Constr. Build. Mater. 311: 125326. https://doi.org/10.1016/j.conbuildmat.2021.125326

Siddique R. 2004. Performance characteristics of high-volume Class F fly ash concrete. Cem. Concr. Res. 34(3): 487-493. https://doi.org/10.1016/j.cemconres.2003.09.002

Chen H-J, Shih N-H, Wu C-H, Lin S-K. 2019. Effects of the loss on ignition of fly ash on the properties of high-volume fly ash concrete. Sustain. 11(9): 2704. https://doi.org/10.3390/su11092704

Meddah MS, Lmbachiya MC, Dhir RK. 2014. Potential use of binary and composite limestone cements in concrete production. Constr. Build. Mater. 58: 193-205. https://doi.org/10.1016/j.conbuildmat.2013.12.012

Huang C-H, Lin S-K, Chang C-S, Chen H-J. 2013. Mix proportions and mechanical properties of concrete containing very high-volume of Class F fly ash. Constr. Build. Mater. 46: 71-78. https://doi.org/10.1016/j.conbuildmat.2013.04.016

Dinakar P, Babu K, Santhanam M. 2008. Mechanical properties of high-volume fly ash self-compacting concrete mixtures. Struct. Concr. 9(2): 109-116. https://doi.org/10.1680/stco.2008.9.2.109

Rerkpiboon A, Tangchirapat W, Jaturapitakkul C. 2015. Strength, chloride resistance, and expansion of concretes containing ground bagasse ash. Constr. Build. Mater. 101(1): 983-989. https://doi.org/10.1016/j.conbuildmat.2015.10.140

Meenyut B, Tanchirapat W, Jaturapitakkul C. 2019. High-strength concrete containing high volume of ground bottom ash. J. Thai. Conc. Assoc. 7(2): 14-24.

ACI 318M. 2014. Building code requirements for structural concrete (ACI 318M-14) and commentary: ACI Committee. American Concrete Institute & International Organization for Standardization, Farmington Hills; Michigan.

Aıtcin P. 2003. The durability characteristics of high performance concrete: a review. Cem Concr Compos. 25(4-5):409-420. https://doi.org/10.1016/S0958-9465(02)00081-1

Kristiawan SA, Aditya MTM. 2015. Effect of high volume fly ash on shrinkage of self-compacting concrete. Procedia. Eng. 125: 705-712. https://doi.org/10.1016/j.proeng.2015.11.110

Kumar B, Tike G, Nanda P. 2007. Evaluation of properties of high-volume fly-ash concrete for pavements. J. Mater. Civ. Eng. 19(10):906-911. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:10(906)

De Weerdt K, Haha MB, Le Saout G, Kjellsen KO, Justnes H, Lothenbach B. 2011. Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cem. Concr. Res. 41(3): 279-291. https://doi.org/10.1016/j.cemconres.2010.11.014

Amnadnua K, Tangchirapat W, Jaturapitakkul C. 2013. Strength, water permeability, and heat evolution of high strength concrete made from the mixture of calcium carbide residue and fly ash. Mater. Des. 51:894-901. https://doi.org/10.1016/j.matdes.2013.04.099

Atiş CD. 2002. Heat evolution of high-volume fly ash concrete. Cem. Concr. Res. 32(5): 751-756. https://doi.org/10.1016/S0008-8846(01)00755-4

Djenaoucine L, Picazo Á, de la Rubia MÁ, Moragues A, Gálvez JC. 2024. Influence of graphene oxide on mechanical properties and durability of cement mortar. Mater. 17(6): 1445. https://doi.org/10.3390/ma17061445

Piasta W, Góra J, Budzyński W. 2017. Stress-strain relationships and modulus of elasticity of rocks and of ordinary and high performance concretes. Constr. Build. Mater. 153: 728-739. https://doi.org/10.1016/j.conbuildmat.2017.07.167

Limbachiya M, Meddah MS, Ouchagour Y. 2012. Performance of Portland/Silica Fume Cement Concrete Produced with Recycled Concrete Aggregate. ACI Mater. J. 109(1): 91-100. https://doi.org/10.14359/51683574

Amin M, Abu el-Hassan K. 2015. Effect of using different types of nano materials on mechanical properties of high strength concrete. Constr. Build. Mater. 80:116-124. https://doi.org/10.1016/j.conbuildmat.2014.12.075

Ridzuan A, Ibrahim A, Ismail A, Diah A. 2005. Durablity performance of recycled aggregate concrete. Achieving Sustainability in Construction: Proceedings of the International Conference held at the University of Dundee, Scotland, UKon 5-6 July 2005. Thomas Telford Publishing: 193-202. https://doi.org/10.1680/asic.34044.0023

Donza H, Cabrera O, Irassar E. 2002. High-strength concrete with different fine aggregate. Cem. Concr. Res. 32(11):1755-1761. https://doi.org/10.1016/S0008-8846(02)00860-8

Publicado

2024-10-31

Cómo citar

Sanit-in, P. ., Charoensuk, T. ., Dueramae, S. ., Abdulmatin, A., Ratanachu, P., Tangchirapat, W. ., & Jaturapitakkul, C. . (2024). Investigación del empleo de ceniza de la combustión de aceite de palma y filler calizo en la fabricación de hormigones sostenibles de alta resistencia. Materiales De Construcción, 74(355), e351. https://doi.org/10.3989/mc.2024.372324

Número

Sección

Artículos