Materiales de Construcción, Vol 59, No 293 (2009)

Mechanical behaviour of steel fibre-reinforced alkali activated slag concrete


https://doi.org/10.3989/mc.2009.41807

S. Bernal
Universidad del Valle, Cali, Colombia

R. Mejía de Gutiérrez
Universidad del Valle, Cali, Colombia

E. Rodríguez
Universidad del Valle, Cali, Colombia

S. Delvasto
Universidad del Valle, Cali, Colombia

F. Puertas
Instituto de Ciencias de la Construcción Eduardo Torroja (CSIC), Madrid, Spain

Abstract


This study addressed the mechanical behaviour of a steel fibre-reinforced alternative concrete made from waterglass (Na2SiO3.nH2O+NaOH)- activated Colombian blast furnace slag. The mixes studied were prepared with 400 kg of cement and the fibres were added in proportions of 40 and 120 kg per cubic metre of concrete. 7-, 14- and 28-day concrete was tested for compressive, splitting tensile and flexural strength. The results obtained showed that adding steel fibre to alkaline concrete lowered early age compressive strength, and that this decline was more intense with rising volumes of steel. Flexural and splitting tensile strength grew, however, enhancing the toughness of the material. As a general rule, the mechanical strength of the plain and fibre-reinforced alkaline concretes studied was higher than exhibited by conventional ordinary Portland cement concrete prepared with similar proportions of cement and fibre.

Keywords


akali-activated slag concretes; steel fibre; mechanical strength

Full Text:


PDF

References


(1) Sarkar, S.; Roumain, J. C.: “New Cements for sustainability”. International Symposium Modern Cement Manufacture, Theme 1, (2003), pp. 45-57.

(2) Gartner, E.: “Industrially Interesting Approaches to Low CO2 Cements”. Cem. Concr. Res., vol. 34 (2004), pp. 489-498. doi:10.1016/j.cemconres.2004.01.021

(3) Moranville-Regourd, M.: “Portland Cement-Based Binders Cements for the Next Millennium”. Modern Concrete Materials (1999), pp. 87-100.

(4) Roy, D. M.; Silsbee, M. R.: “Novel Cements and Cement Products for Applications in the 21st Century”. Symposium Concrete Technology, Past, Present and future, ACI, SP 144, 349-382 (1994).

(5) Brough, A. R.; Atkinson, A.: “Sodium Silicate-Based Alkali-Activated Slag Mortars. Part I. Strength, Hydration and Microstructure”. Cem. Concr. Res., vol. 32 (2002), pp. 865-879. doi:10.1016/S0008-8846(02)00717-2

(6) Fernández, A.; Puertas, F.; Sobrados, I.; Sanz, J.: “Structure of Calcium Silicate Hydrates Formed in Alkaline Activated Slag: Influence of the Type of Alkaline Activator”. J. Am. Ceramic Society, vol. 86, 8 (2003), pp. 1389-1394.

(7) Puertas, F.: “Cementos de Escoria Activados Alcalinamente: Situación Actual y Perspectivas de Futuro”. Mater. Construcc., vol. 45, 239 (1995), pp. 53-64.

(8) Rodríguez, E.; Bernal, S.; Mejía de Gutiérrez, R.; Puertas, F.: “Alternative concrete based on alkali-activated slag”. Mater. Construcc., vol. 58, 291 (2008), pp. 53-67.

(9) Bernal, S.; Mejía de Gutiérrez, R.; Rodríguez, E.: “Nuevos Concretos para el Aprovechamiento de un Sub- Producto Industrial”. Proc. Congreso Iberoamericano de Metalurgia y Materiales, IBEROMET IX La Habana - Cuba (2006), pp. 793-802.

(10) Bernal, S.; Mejía de Gutiérrez, R.; Delvasto, S.; Rodríguez, E.: “Performance of Geopolymeric Concrete Reinforced with Steel Fibers”. 10th Int. Bonded Inorganic Bonded Fiber Composites Conference. Proceedings IIBCC. Sao Pablo - Brasil (2006), pp. 156-167.

(11) Bernal, S.; Mejía de Gutiérrez, R.; Delvasto, S.; Rodríguez, E.: “Non Conventional Concretes Based on GGBS”. Proceedings of the 20th International Conference on Solid Waste Technology and Management, Philadelphia-USA (2005), pp. 259-267.

(12) Mejía de Gutiérrez, R.; Bernal, S.; Rodríguez, E.; Maldonado, J.: “Properties of Alkali-Activated Slag Concrete”. Proceedings Brazilian Conference on Non-Conventional Materials and Technologies: Affordable Housing and Infrastructure. NOCMAT 2004. Pirassununga - Brasil (2004), 10 p.

(13) Bakharev, T.; Sanjayan, J. G.; Cheng, Y. B.: “Resistance of Alkali-Activated Slag Concrete to Acid Attack”. Cem. Concr. Res., vol. 33 (2003), pp. 1607-1611. doi:10.1016/S0008-8846(03)00125-X

(14) Bakharev, T.; Sanjayan, J. G.; Cheng, Y. B.: “Sulfate Attack on Alkali-Activated Slag Concrete”. Cem. Concr. Res., vol. 32 (2002), pp. 211-216. doi:10.1016/S0008-8846(01)00659-7

(15) Roy, D. M.; Jiang, W.; Silsbee, M. R.: “Chloride Diffusion in Ordinary, Blended, and Alkali-Activated Cement Pastes and Its Relation to Other Properties”. Cem. Concr. Res., vol. 30 (2000), pp. 1879-1884. doi:10.1016/S0008-8846(00)00406-3

(16) Wang, S. D.; Scrivener, K.; Pratt, P. L.: “Alkali Activated Slag Cement and Concrete: A Review of Its Properties and Problems”. Advances in Cement Research, vol. 24 (1995), pp. 93-102.

(17) Acacio de Melo, A.: “Estudo da retração em argamassa com cimento de escória ativada”. Thesis do Mestre. Escola politécnica da Universidade de São Pablo, Brasil (2002).

(18) Palacios, M.: “Empleo de Aditivos Orgánicos en la Mejora de las Propiedades de Cementos y Morteros de Escoria Activada Alcalinamente”. Tesis Doctoral, Universidad Autónoma de Madrid, Madrid (2006).

(19) Collins, F.; Sanjayan, J. G.: “Effects of Ultra-Fine Materials on Workability and Strength of Concrete Containing Alkali-Activated Slag as the Binder”. Cem. Concr. Res., vol. 29, 3 (1999), pp. 459-462 doi:10.1016/S0008-8846(98)00237-3

(20) Collins, F.; Sanjayan, J.G. “Strength and Shrinkage Properties of Alkali-Activated Slag Concrete Containing Porous Coarse Aggregate”. Cem. Concr. Res., vol. 29, 4 (1999), pp. 607-610. doi:10.1016/S0008-8846(98)00203-8

(21) Collins, F.; Sanjayan, J. G.: “Cracking Tendency of Alkali-Activated Slag Concrete Subjected to Restrained Shrinkage”. Cem. Concr. Res., vol. 30, 5 (2000), pp. 791-798. doi:10.1016/S0008-8846(00)00243-X

(22) Collins, F.; Sanjayan, J. G.: “Microcracking and Strength Development of Alkali Activated Slag Concrete”. Cement and Concrete Composites, vol. 23, 4-5 (2001), pp. 345-352.

(23) Nemi, B.; Godoy, M. L.; Rocco, C.: “Medición de Propiedades de Fractura en Hormigones Reforzados con Fibras de Acero”. Jornadas SAM - CONAMET - AAS (2001), pp. 927-934.

(24) Bernal, S.; Mejía de Gutiérrez, R.; Rodríguez, E.; Delvasto, S.: “Performance of Geopolymeric Concrete Reinforced with Steel Fibers”. Proceedings of 10th Int. Inorganic-Bonded Fiber Composites Conference. Sao Pablo- Brazil (2006), pp. 156-167.

(25) Puertas, F.; Amat, T.; Fernández-Jiménez, A.; Vázquez, T.: “Mechanical and Durable Behaviour of Alkali Cement Mortars Reinforced with Polypropylene Fibres”. Cem. Concr. Res., vol. 33 (2003), pp. 2031-2036. doi:10.1016/S0008-8846(03)00222-9

(26) Puertas, F.; Gil-Maroto, A.; Palacios, M.; Amat, T.: “Morteros de Escoria Activada Alcalinamente Reforzados con Fibra de Vidrio AR. Comportamiento y Propiedades”. Mater. Construcc., vol. 56, 283 (2006), pp. 79-90. doi:10.3989/mc.2006.v56.i283.10

(27) Penteado Dias, D.; Thaumaturgo, C.: “Fracture Toughness of Geopolymeric Concretes Reinforced with Basalt Fibers”. Cement and Concrete Composites, vol. 27 (2005), pp. 49-54. doi:10.1016/j.cemconcomp.2004.02.044

(28) Silva, F. J.; Thaumaturgo, C.: “Fiber Reinforcement and Fracture Response in Geopolymeric Mortars”. Fatigue Fract. Eng. Mater. Struct., vol. 26 (2003), pp. 167-172. doi:10.1046/j.1460-2695.2003.00625.x

(29) Silva, F. J.; Thaumaturgo, C.: “The Chemistry, Reinforcement and Fracture in Geopolymeric Cement Composites”. 11th International Congress on the Chemistry of Cement (ICCC), Durban - South Africa (2003).

(30) Savastano, H. Jr.; Warden, P.; Coutts, G.: “Microstructure and Mechanical Properties of Waste Fibre-Cement Composites”. Cement and Concrete Composites, vol. 27 (2005), pp. 583-592. doi:10.1016/j.cemconcomp.2004.09.009

(31) Dramix, Data Sheet Aztec Building Products - Wiremix®.

(32) Li, Z.; Möbasher, B.; Shah, S.: “Characterization of Interfacial Properties in Fiber-Reinforced Cementitious Composites”. Journal of American Society, vol. 74, 9 (1991), pp. 2156-2164.

(33) Redon, C.; Li, V. C.; Wu, C.; Hoshiro, H.; Saito, T.; Ogawa, A.: “Measuring and Modifying Interface Properties of PVA Fibers in ECC Matrix”. Journal of Materials in Civil Engineering (2001), pp. 399-406 doi:10.1061/(ASCE)0899-1561(2001)13:6(399)

(34) Hakkinen, T.: “The Influence of Slag Content on the Microstructure, Permeability and Mechanical Properties of Concrete. Part 2”. Cem. Concr. Res., vol. 23 (1993), pp. 518-530. doi:10.1016/0008-8846(93)90002-Q




Copyright (c) 2009 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es