Materiales de Construcción, Vol 63, No 311 (2013)

Study of the cracking of sandwich panels of plasterboard and rockwool


https://doi.org/10.3989/mc.2013.01412

J. A. Alonso
Universidad Politécnica de Madrid, Spain

E. Reyes
Universidad Politécnica de Madrid, Spain

J. C. Gálvez
Universidad Politécnica de Madrid, Spain

Abstract


This paper presents the study of plasterboard and rockwool sandwich panels cracking under flexural loading. These panels are usually used to perform interior partition walls and they frequently show cracking pathology due to excessive deflexion of the slabs. There are currently no reliable simulation models and experimental data for the study of this problem. This paper presents the results of an experimental campaign aimed to characterize the fracture behaviour of sandwich panels and their individual components. In addition, the paper presents a cohesive model with embedded crack to simulate the fracture behaviour of the panel. Finally we present the results of tests for mixed mode fracture (tensile / shear) commercial panels and their behaviour is reproduced with the cohesive model proposed, yielding a good fit.

Keywords


sandwich panel; plasterboard; fracture; finite element; numerical modeling

Full Text:


PDF

References


(1) Comunicación oral del Departamento de Marketing, Placo, Grupo Saint Gobain. (Consulta realizada en 2011).

(2) Villanueva, L.; Lasheras, F.; del Río, M. y Hernández-Olivares, F.: "Modelo matemático del comportamiento mecánico en flexión del cartón-yeso", Inf. Constr, vol. 45, nº 430, pp. 43-51, 1994. http://dx.doi.org/10.3989/ic.1994.v45.i430.1141

(3) Ministerio de la Vivienda: "Código Técnico de la Edificación. Documento Básico HR: Protección Frente al Ruido". Madrid (2011).

(4) Ministerio de la Vivienda, CSIC. Instituto Eduardo Torroja: "Catálogo de elementos constructivos del Código Técnico de la Edificación". Madrid (2010).

(5) Sancho, J.M.; Planas, J.; Cendón, D.A.; Reyes, E.; Gálvez, J.C.: "An embedded crack model for finite element analysis of concrete fracture", Engineering Fracture Mechanics, 74 (1-2), pp. 75-86, 2007. http://dx.doi.org/10.1016/j.engfracmech.2006.01.015

(6) Reyes, E.; Gálvez, J.C.; Casati, M.J.; Cendón, D.A.; Sancho, J.M.; Planas, J.: "An embedded cohesive crack model for finite element analysis of brickwork masonry fracture". Engineering Fract. Mech 76, pp. 1930-1944, 2009. http://dx.doi.org/10.1016/j.engfracmech.2009.05.002

(7) Reyes, E.; Casati, M.J.; Gálvez, J.C.: "Experimental scale model study of cracking in brick masonry under tensile and shear stress". Mater. Construcc., 58, 291, pp. 69-83, 2008.

(8) Río Merino, M. del Santa Cruz Astorqui, J.: "Finite element simulation to design constructive elements: An application to light gypsum plaster for partitions", Constr. and Build. Mater. 23, pp. 14–27, 2009. http://dx.doi.org/10.1016/j.conbuildmat.2007.12.009

(9) Telue, Y.; Mahendran, M.: "Behaviour of cold-formed steel wall frames lined with plasterboard", Journal of Constructional Steel Research 57, pp. 435–452, 2001. http://dx.doi.org/10.1016/S0143-974X(00)00024-9

(10) Restrepo, J.I.; Bersofsky, A.M.: "Performance characteristics of light gage steel stud partition walls", Thin-Walled Structures 49, pp. 317–324, 2011. http://dx.doi.org/10.1016/j.tws.2010.10.001

(11) Asociación Española de Normalización y Certificación, "Norma UNE EN 520:2005. Placa de yeso laminado. Definiciones, especificaciones y métodos de ensayo". Madrid (2005).

(12) Asociación Española de Normalización y Certificación, "Norma UNE EN 13.162:2002 Lana de roca. Definiciones, especificaciones y métodos de ensayo". Madrid (2002).

(13) RILEM 50-FMC Committee Fracture Mechanics of Concrete. "Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams". Mater. Construct. vol. 18, pp. 285-290 (1986).

(14) Barenblatt, G.I.: "The mathematical theory of equilibrium of cracks in brittle fracture". Adv. Appl. Mech.; vol. 7, pp. 55-129 (1962). http://dx.doi.org/10.1016/S0065-2156(08)70121-2

(15) Dugdale, D.S.: "Yielding of steel sheet sheets containing slits". J. Mech. Phys, vol. 8, pp. 100-108 (1960). http://dx.doi.org/10.1016/0022-5096(60)90013-2

(16) Hillerborg, A.; Modéer, M.; Petersson, P.E.: "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements". Cement. Concret. Res., vol. 6, pp. 773-782 (1976). http://dx.doi.org/10.1016/0008-8846(76)90007-7

(17) Simó, J.; Oliver, J.; Armero, F.;"An analysis strong discontinuities induced by strain softening in rate-independent inelastic solids". Comput. Mech.; 12:277-96 (1993). http://dx.doi.org/10.1007/BF00372173

(18) Sancho, J.M.; Planas, J.; Gálvez, J.C.; Reyes, E.; Cendón, D.A.: "An embedded cohesive crack model for finite element analysis of mixed mode fracture of concrete". Fatigue Fract. Engng. Mater. Struct. vol. 29, pp. 1056-1065. 2006. http://dx.doi.org/10.1111/j.1460-2695.2006.01076.x




Copyright (c) 2013 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es