The influence of temperature in a capillary imbibition salt weathering simulation test on Mokattam limestone


  • N. Aly Suez University - Instituto de Geociencias (CSIC, UCM)
  • M. Gomez–Heras Instituto de Geociencias (CSIC, UCM) - CEI Campus Moncloa (UPM, UCM, CSIC) - Universidad Politécnica de Madrid
  • A. Hamed Suez University
  • M. Álvarez de Buergo Instituto de Geociencias (CSIC, UCM)
  • F. Soliman Suez Canal University



Stone decay, Salt weathering, Limestone, Durability


Limestone is one of the most frequent building stones used in monuments in Egypt from ancient Egyptian times and salt weathering is one of the main threats to these monuments. During this work, cylindrical limestone samples (2 cm diameter and approx. 4 cm length) from Mokattam group, one of the most frequent materials in historic Cairo, were subjected, in a purpose-made simulation chamber, to laboratory salt weathering tests with a 10% weight NaCl solution at different temperatures (20, 30, 40 °C). During each test, temperature was kept constant and salt solutions flowed continuously imbibing samples by capillary rise resembling the way they get into building stone in many real cases. Air temperature, relative humidity inside the simulation chamber and also samples weight were digitally monitored and recorded. Results show the influence of temperature and the ratio between imbibitions and evaporation on the dynamics of salt crystallization in the samples.


Download data is not yet available.


1. Rodriguez, N.C.; Doehne, E. (1999) Salt weathering: influence of evaporation rate, supersaturation and crystallization pattern. Earth Surface Processes and landforms. 24, 191–209.<191::AID-ESP942>3.0.CO;2-G

2. Benavente, D.; García del Cura, M.A.; Bernabeu, A.; Ordo-ez, S. (2001) Quantification of salt weathering in porous stones using an experimental continuous partial immersion method. Eng. Geol. 59 [3–4], 313–325.

3. McBride, E.F.; Picard, M.D. (2004) Origin of honeycombs and related weathering forms in Oligocene Macigno Sandstone, Tuscan Coast near Livorno, Italy. Earth Surface Processes and landforms. 29, 713–735.

4. Gomez-Heras, M.; Benavente, D.; Alvarez de Buergo, M.; Fort, R. (2004) Soluble salt minerals from pigeon droppings as potential contributors to the decay of stone based Cultural Heritage. Eur. J. Mineral. 16, 505–509.

5. Scherer, G.W. (2004) Stress from crystallization of salt. Cem. Concr. Res. 34, 1613–1624.

6. Kamh, G.; Kallash, A.; Azzam, R. (2008) Factors controlling building susceptibility to earthquakes: 14-year recordings of Islamic archaeological sites in Old Cairo, Egypt: a case study. Environ. Geol. 56, 269–279.

7. Fitzner, B.; Heinrichs, K.; La Bouchardiere, D. (2003) Weathering damage on Pharaonic sandstone monuments in Luxor-Egypt. Build. Environ. 38, 1089–1103.

8. Smith, B.J.; Torok, A.; McAlister, J.J.; Megarry, Y. (2003) Observations on the factors influencing stability of building stones following contour scaling: a case study of oolitic limestones from Budapest, Hungary. Build. Environ. 38 [9–10], 1173–1183.

9. Huinink, H.P.; Pel, L.; Kopinga, K. (2004) Simulating the growth of tafoni. Earth Surface Processes and landforms. 29, 1225–1233.

10. Goudie, A.S. (1999) A comparison of the relative resistance of limestones to frost and salt weathering. Permafrost and Periglacial Processes. 10, 309–316.<309::AID-PPP330>3.0.CO;2-C

11. Benavente, D.; Cueto, N.; Martínez-Martínez, J.; García del Cura, M.A.; Ca-averas, J.C. (2007) The influence of petrophysical properties on the salt weathering of porous building rocks. Environ. Geol. 52, 215–224.

12. Nicholson, D.T. (2001) Pore properties as indicators of breakdown mechanisms in experimentally weathered limestones. Earth Surface Processes and Landforms. 26, 819–838.

13. Chéné, G.; Bastian, G.; Brunjail, C.; Laurent, J.P. (1999) Accelerating weathering of tuffeau block submitted to wetting–drying cycles. Mater. Struct. 32 [221], 525–532.

14. Gomez-Heras, M.; Fort, R. (2007) Patterns of halite (NaCl) crystallisation in building stone conditioned by laboratory heating regimes. Environ. Geo. 52, 239–247.

15. Scherer, G.W. (2000) Stress from crystallization of salt in pores. 9th International on Deterioration and Conservation of Stone, Venice, New York. Elsevier, 187–194.

16. Sawdy, A.; Heritage, A.; Pel, L. (2008) A review of salt transport in porous media, assessment methods and salt reduction treatments. SWBSS proceedings, 1–27. Ottosen LM et al. (Eds). Salt Weathering on Buildings and Stone Sculptures, Technical university of Denmark–Department of civil Engineering, Lyngby, Denmak. PMid:18224546

17. Fitzner, B.; Heinrichs, K.; La Bouchardiere, D. (2003) Limestone weathering of historical monuments in Cairo, Egypt. In Siegesmund, S.; Weiss, T. & Vollbrecht, A. (edit.) Natural stone, weathering phenomena, conservation strategies and case studies, Geological Society, London, Special Publication. 205, 217–239.

18. Goudie, A.S. (1974) Further experimental investigation of rock weathering by salt and other mechanical processes. Zeitschrift fur Geomorphologie supplement band. 21, 1–12.

19. Sperling, C.H.B.; Cooke, R.U. (1985) Laboratory simulation of rock weathering by salt crystallization and hydration processes in hot- arid environments. Earth Surface Processes and Landforms. 10 [6], 541–555.

20. Grossi, C.M.; Esbert, R.M. (1994) Las sales solubles en el deterioro de rocas monumentales; revisión bibliográfica. Mater. Construc. 44, 15–30.

21. Goudie, A. S.; Viles, H. A. (1997) Salt Weathering Hazards. John Wiley, Chichester.

22. Benavente, D.; García del Cura, M.A.; Ordo-ez, S. (2003) Salt influence on evaporation from porous building rocks. Construc. Build. Mat. 17, 113–122.

23. Hamed, A.; Aly, N.; Gomez-Heras, M.; Álvarez de Buergo, M. (submitted) New experimental method to study the combined effect of temperature and salt weathering. In Prikryl R et al. (Eds.). Geological Society Special Publication, Sustainability of traditional construction materials in modern Geol. Soc. Publishing House, Bath, series Special Publication.

24. Mac Adam, D.L. (1985) Colour Measurement–Theme and Variations, Second Revised Edition, Springer-Verlag.

25. Prasad, K.M.; Raheem, S.; Vijayalekshmi, P.; Kamala Sastri, C. (1996) Basic aspects and applications of tristimulus colorimetry–Review–Talanta. 1187–1206.

26. Commission Internationale de l'Eclairage (CIE), (1986) Colorimetry, 2nd edition. Publication CIE 15.2. Bureau central de la CIE, Paris, France, 83.

27. ASTM (2000) E313–00 Standard practice for calculating yellowness and whiteness indices from instrumentally measure color coordinates. ASTM, West Conshohocken, Pennsylvania.

28. Benavente, D.; Martínez-Verdú, F.; Bernabeu, A.; Viquiera, V.; Fort, R.; García del Cura, M.A.; Illueca, C.; Ordó-ez, S. (2003) Influence of surface roughness on colour changes in building stones. Color Research and Application. 28/5, 343–351.

29. DIN (2010) EN ISO42887 Geometrical Product Specifications (GPS) - Surface texture: Profile method-Terms, definitions and surface texture parameters.

30. Folk, R.L. (1962) Classification of carbonate rocks- a symposium, American Association of Petroleum Geologists, Tulsa, Memoir. 62–84.

31. Scolle, P.A.; Scolle, D.S.U. (2003) A color guide to petrography of carbonate rocks, grains, textures, porosity, diagenesis. American Association of Petroleum Geologiests, Tulsa, Memoir. 77, 394–406.



How to Cite

Aly, N., Gomez–Heras, M., Hamed, A., Álvarez de Buergo, M., & Soliman, F. (2015). The influence of temperature in a capillary imbibition salt weathering simulation test on Mokattam limestone. Materiales De Construcción, 65(317), e044.



Research Articles