Study of potential advantages of pre-soaking on the properties of pre-cast concrete made with recycled coarse aggregate

Authors

  • Z. Sánchez-Roldán ETS de Ingeniería de Edificación, University of Granada
  • M. Martín-Morales ETS de Ingeniería de Edificación, University of Granada
  • I. Valverde-Palacios ETS de Ingeniería de Edificación, University of Granada
  • I. Valverde-Espinosa ETS de Ingeniería de Edificación, University of Granada
  • M. Zamorano ETS Ingenieros de Caminos, Canales y Puertos, University of Granada

DOI:

https://doi.org/10.3989/mc.2016.01715

Keywords:

Concrete, Aggregate, Pre-cast, Waste treatment, Workability

Abstract


Recycled aggregate (RA) from construction and demolition waste is traditionally used for the manufacture of concrete for different applications. Due primarily to high water content required by RA, the quality of the concrete is determined by the amount of replacement RA. The aim of this study is to determine if RA pre-soaking enhances the properties of pre-cast concrete for street furniture, with low mechanical and structural requirements, in which 100% of the coarse fraction is replaced. The results of physical and mechanical tests performed on concrete specimens in which the RA was pre-soaked using five different methods applied are compared with a reference concrete sample and a concrete sample made with non-pre-soaked RA. The results show that non-pre-soaked RA offers improved physical-mechanical properties for pre-cast concrete, except for the workability; problems arising from poorer workability could be improved with the use of plasticizers, which can be easily included in the production process.

Downloads

Download data is not yet available.

References

1. Solís-Guzmán, J.; Marrero, M.; Montes-Delgado, M.V.; Ramirez-de-Arellano, A. (2009) A Spanish model for quantification and management of construction waste. Waste. Manage. 29 [9], 2542–548. http://dx.doi.org/10.1016/j.wasman.2009.05.009 PMid:19523801

2. Jiménez, C.; Barra, M.; Valls, S.; Aponte, D.; Vázquez, E. (2014) Durability of recycled aggregate concrete designed with the Equivalent Mortar Volume (EMV) method: Validation under the Spanish context and its adaptation to Bolomey methodology. Mater. Construcc. 64 [313], e006. http://dx.doi.org/10.3989/mc.2013.00913

3. Vegas, I.; Iba-ez, J.A.; Lisbona, A.; Sáez de Cortazar, A.; Frías, M. (2011) Pre-normative research on the use of mixed recycled aggregates in unbound road sections. Constr Build Mater. 25 [5], 2674–2682. http://dx.doi.org/10.1016/j.conbuildmat.2010.12.018

4. Cuenca-Moyano, G.M.; Martín-Morales, M.; Valverde-Palacios, I.; Valverde-Espinosa, I.; Zamorano, M. (2014) Influence of pre-soaked recycled fine aggregate on the properties of masonry mortar. Constr Build Mater. 70, 71–79. http://dx.doi.org/10.1016/j.conbuildmat.2014.07.098

5. Saiz-Martínez, P.; González-Cortina, M.; Fernández-Martínez, F. (2015) Characterization and influence of fine recycled aggregates on masonry mortars properties. Mater. Construcc. 65 [319], e058. http://dx.doi.org/10.3989/mc.2015.06014

6. Medina, C.; Juan, A.; Frías, M.; Sánchez de Rojas, M.I.; Moran, J. Ma.; Guerra. M.I. (2011) Characterization of concrete made with recycled aggregate from ceramic sanitary ware. Mater Construcc. 61 [304], 533–546. http://dx.doi.org/10.3989/mc.2011.59710

7. Mas, B.; Cladera, A.; Del Olmo, T.; Pitarch, F. (2012) Influence of the amount of mixed recycled aggregates on the properties of concrete for non-structural use. Constr. Build. Mater. 27 [1], 612–622. http://dx.doi.org/10.1016/j.conbuildmat.2011.06.073

8. Poon, C.S.; Kou, S.C.; Lam, L. (2002) Use of recycled aggregates in molded concrete bricks and blocks. Constr Build Mater. 16 [5], 281–289. http://dx.doi.org/10.1016/S0950-0618(02)00019-3

9. Jankovic, K.; Nikolic, D.; Bojovic, D. (2012) Concrete paving blocks and flags made with crushed brick as aggregate. Constr. Build. Mater. 28 [1], 659–663. http://dx.doi.org/10.1016/j.conbuildmat.2011.10.036

10. López Gayarre, L.; López-Colina, C.; Serrano, M.A.; López-Martínez, A. (2013) Manufacture of concrete kerbs and floor blocks with recycled aggregate from C&DW. Constr. Build. Mater. 40, 1193–1199. http://dx.doi.org/10.1016/j.conbuildmat.2011.11.040

11. Xiao, Z.; Ling, T.Z.; Kou, S.C.; Wang, Q.; Poon, C.S. (2011) Use of wastes derived from earthquakes for the production of concrete masonry partition wall blocks. Waste Manage. 31 [8], 1859–1866. http://dx.doi.org/10.1016/j.wasman.2011.04.010 PMid:21570277

12. Poon, C.S.; Shui, Z.H.; Lam, L.; Fok, H.; Kou, S.C. (2004) Influence of moisture states of natural and recycled aggregates on the slump and compressive strength of concrete. Cement Concrete Res. 34 [1], 31–36. http://dx.doi.org/10.1016/S0008-8846(03)00186-8

13. Cachim, P.B. (2009) Mechanical properties of brick aggregate concrete. Constr. Build. Mater. 23 [3], 1292–1297. http://dx.doi.org/10.1016/j.conbuildmat.2008.07.023

14. Etxeberria, M.; Vázquez, E.; Marí, A.; Barra, M. (2007) Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete. Cement Concrete Res. 37 [5], 735–742. http://dx.doi.org/10.1016/j.cemconres.2007.02.002

15. Rahal, K. (2007) Mechanical properties of concrete with recycled coarse aggregate. Build Environ. 42 [1], 407–415. http://dx.doi.org/10.1016/j.buildenv.2005.07.033

16. De Juan, M.S.; Gutierrez, P.A. (2009) Study on the influence of attached mortar content on the properties of recycled concrete aggregate. Constr Build Mater. 23 [2], 872–877. http://dx.doi.org/10.1016/j.conbuildmat.2008.04.012

17. Debieb, F.; Courard, L.; Kenai, S.; Degeimbre, R. (2009) Roller compacted concrete with contaminated recycled aggregates. Constr Build Mater. 23 [11], 3382–3387. http://dx.doi.org/10.1016/j.conbuildmat.2009.06.031

18. Ferreira, L.; de Brito, J.; Barra, M. (2011) Influence of the pre-saturation of recycled coarse concrete aggregates on concrete properties. Mag Concrete. Res. 63 [8], 617–627. http://dx.doi.org/10.1680/macr.2011.63.8.617

19. González, J.G.; Robles, D.R.; Valdés, A.J.; Morán del Pozo, J.M.; Romero, M.I.G. (2013) Influence of Moisture States of Recycled Coarse Aggregates on the Slump Test. Adv Mat Res. 742, 379–383. http://dx.doi.org/10.4028/www.scientific.net/AMR.742.379

20. Mefteh, H.; Kebaïli, O.; Oucief, H.; Berredjem, L.; Arabi, N. (2013) Influence of moisture conditioning of recycled aggregates on the properties of fresh and hardened concrete. J Clean Prod. 54, 282–288. http://dx.doi.org/10.1016/j.jclepro.2013.05.009

21. Pelufo, M.J.; Domingo, A.; Ulloa, V.A.; Vergara, N.N. (2009) Analysis of moisture state of recycled coarse aggregate and its influence on compression strength of the concrete. Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium 2009, Valencia, Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures, 28 September – 2 October 2009, Universidad Politecnica de Valencia, Spain. http://hdl.handle.net/10251/6652.

22. Etxeberria, M.; Vázquez, E. (2010) Reacción álcali sílice en el hormigón debido al mortero adherido del árido reciclado, Alkali silica reaction in concrete induced by mortar adhered to recycled aggregate. Mater. Construcc. 60 [297], 47–58. http://dx.doi.org/10.3989/mc.2010.46508

23. Cabral, A.E.B.; Schalch, V.; Dal Molin, D.C.C.; Ribeiro, J.L.D. (2010) Mechanical properties modeling of recycled aggregate concrete. Constr Build Mater. 24 [4], 421–430. http://dx.doi.org/10.1016/j.conbuildmat.2009.10.011

24. Evangelista, L.; De Brito, J. (2007) Mechanical behaviour of concrete made with fine recycled concrete aggregates. Cement. Concrete. Comp. 29 [5], 397–401. http://dx.doi.org/10.1016/j.cemconcomp.2006.12.004

25. Kou, S. (2006) Reusing recycled aggregates in structural concrete. PhD Thesis, Politechnic University, The Hong Kong. 278.

26. Kou, S.C.; Poon, C.S.; Wan, H.W. (2012) Properties of concrete prepared with low-grade recycled aggregates. Constr Build Mater. 36, 881–889. http://dx.doi.org/10.1016/j.conbuildmat.2012.06.060

27. Poon, C.S.; Kou, S.C.; Wana, H.W.; Etxeberria, M. (2009) Properties of concrete blocks prepared with low grade recycled aggregates. Waste Manage. 29 [9], 2369–2377. http://dx.doi.org/10.1016/j.wasman.2009.02.018 PMid:19398196

28. Poon, C.S.; Chan, D. (2006) Paving blocks made with recycled concrete aggregate and crushed clay brick. Constr. Build. Mater. 20 [8], 569–577. http://dx.doi.org/10.1016/j.conbuildmat.2005.01.044

29. Soutsos, M.N.; Tang, K.; Millard, S.G. (2011) Use of recycled demolition aggregate in pre-cast products, phase II: Concrete paving blocks. Constr. Build. Mater. 25 [7], 3131–3143. http://dx.doi.org/10.1016/j.conbuildmat.2010.12.024

30. Gencel, O.; Ozel, C.; Koksal, F.; Erdogmus, E.; Martínez- Barrera, G.; Brostow, W. (2012) Properties of concrete paving blocks made with waste marble. J Clean Prod. 21 [1], 62–70. http://dx.doi.org/10.1016/j.jclepro.2011.08.023

31. Soutsos, M.N.; Tang, K.; Millard, S.G. (2012) The use of recycled demolition aggregate in pre-cast concrete products – Phase III: Concrete pavement flags. Constr. Build. Mater. 36, 674–680. http://dx.doi.org/10.1016/j.conbuildmat.2012.06.045

32. European standard EN 13198 (2004) Pre-cast concrete products. Street furniture and garden products. CEN.

33. Zega, C.J.; Di Maio, A.A. (2011) Use of recycled fine aggregate in concretes with durable requirements. Waste Manage 31 [11], 2336–2340. http://dx.doi.org/10.1016/j.wasman.2011.06.011 PMid:21775123

34. EHE-08. (2008) Ministerio de la Presidencia. Real Decreto 1247/2008, de 18 de julio, por el que se aprueba la Instrucción de hormigón estructural, Boletín Oficial del Estado, BOE 2008; 203 (suplemento):1-203.

35. European standard EN 933-1. (2012) Tests for geometrical properties of aggregates. Part 1: Determination of particle size distribution. Sieving method. CEN.

36. European standard EN 933-2. (1996) Tests for geometrical properties of aggregates. Part 2: Determination of particle size distribution. Test sieves, nominal size of apertures. CEN.

37. European standard EN 1097-6. (2000) Tests for mechanical and physical properties of aggregates. Part 6: Determination of particle density and water absorption. CEN.

38. European standard EN 1097-5. (2009) Tests for mechanical and physical properties of aggregates. Part 5: Determination of the water content by drying in a ventilated oven. CEN.

39. European standard EN 933-11. (2009) Tests for geometrical properties of aggregates, Part 11: Classification test for the constituents of coarse recycled aggregate. CEN.

40. Agrela, F.; De Juan, M.S.; Ayuso, J.; Geraldes, V.L.; Jiménez, J.R. (2011) Limiting properties in the characterisation of mixed recycled aggregates for use in the manufacture of concrete. Constr. Build. Mater. 25 [10], 3950–3955. http://dx.doi.org/10.1016/j.conbuildmat.2011.04.027

41. González-Fonteboa, B.; Martínez-Abella, F. (2008) Concretes with aggregates from demolition waste and silica fume. Materials and mechanical properties. Build. Environ. 43 [4], 429–437. http://dx.doi.org/10.1016/j.buildenv.2007.01.008

42. Martín-Morales, M.; Sánchez-Roldán, Z.; Zamorano, M.; Valverde-Palacios, I. (2013) Métodos granulométricos en la caracterización del árido reciclado para su uso en hormigón estructural. Size grading methods to characterize construction and demolition waste for its use in structural concrete. Mater. Construcc. 63 [310], 235–249. http://dx.doi.org/10.3989/mc.2013.mc.06511

43. European standard EN 12390-2. (2009) Testing fresh concrete. Part 2: Making and curing specimens for strength tests. CEN.

44. European standard EN 12350-2. (2009) Testing fresh concrete. Part 2: Slump-test. CEN.

45. European standard EN 12350-6. (2009) Testing fresh concrete. Part 6: Density. CEN.

46. European standard EN 12390-7. (2009) Testing hardened concrete. Part 7: Density of hardened concrete. CEN.

47. European standard EN 13369. (2006) Common rules for pre-cast concrete products. CEN.

48. European standard EN 12390-3. (2009) Testing hardened concrete. Part 3: Compressive strength of test specimens. CEN.

49. Ismail, S.; Ramli, M. (2014) Effect of Different Moisture States of Surface-Treated Recycled Concrete Aggregate on Properties of Fresh and Hardened Concrete, World Academy of Science, Engineering and Technology International Journal of Civil. Architectural Science and Engineering. 8: 65-71. International Science Index 85; 2014.

50. Rodrigues, F.; Evangelista, L.; de Brito, J. (2013) A New Method to Determine the Density and Water Absorption of Fine Recycled Aggregates. Materials. Researc. 16 [5], 1045–1051. http://dx.doi.org/10.1590/s1516-14392013005000074

51. Canovas, M.F. (2004) Hormigón, Séptima edición, España: Madrid. ISBN: 84-7493-125-8.

52. López-Gayarre, F.; Serna, P.; Domingo-Cabo, A.; Serrano- López, A.; López-Colina, C. (2009) Influence of recycled aggregate quality and proportioning criteria on recycled concrete properties. Waste. Manage. 29 [12], 3022–3028. http://dx.doi.org/10.1016/j.wasman.2009.07.010 PMid:19709870 53. Bustillo Revuelta, M. (2008) Hormigones y Morteros, Fueyo Editores, España: Madrid. ISBN: 978-84-935279-1-4.

54. Pérez-Benedicto, J.A.; del Río-Merino, M.; Peralta-Canudo, J.L.; de la Rosa-La Mata, M. (2012) Mechanical characteristics of concrete with recycled aggregates coming from prefabricated discarded units. Mater. Construcc. 62 [305] 25–37. http://dx.doi.org/10.3989/mc.2011.62110

55. Duan, Z.H.; Poon, C.H. (2014) Properties of recycled aggregate concrete made with recycled aggregates with different amounts of old adhered mortars. Mater. Des. 58, 19–29. http://dx.doi.org/10.1016/j.matdes.2014.01.044

56. Salem, R.M.; Burdette, E.G. (1998) Role of chemical and mineral admixture on physical properties and frost-resistance of recycled aggregate concrete. ACI Mater. J. 95 [5], 558–563.

57. Soutsos, M.N.; Tang, K.; Millard, S.G.; (2011) Concrete building blocks made with recycled demolition aggregate. Constr. Build. Mater. 25 [2], 726–735. http://dx.doi.org/10.1016/j.conbuildmat.2010.07.014

58. De Brito, J.; Saikia, N. (2013) Chapter 5: Use of Construction and Demolition Waste as Aggregate: Properties of Concrete. In: De Brito J, Saikia N. Recycled Aggregate in Concrete, Green Energy and Technology, Springer-Verlag London. 54: 229–337. http://dx.doi.org/10.1007/978-1-4471-4540-0_5

59. Sánchez de Juan, M. (2005) Estudio sobre la utilización de árido reciclado para la fabricación de hormigón estructural (Study on the use of recycled aggregate in structural concrete). Tesis Doctoral. Universidad Politécnica de Madrid. ETSI de Caminos, Canales y Puertos, España: Madrid. 502.

60. López Gayarre, F. (2008) Influencia de la variación de los parámetros de dosificación y fabricación de hormigón reciclado estructural sobre sus propiedades físicas y mecánicas, Tesis Doctoral, Universidad de Oviedo, España: Gijón. 310.

Published

2016-03-30

How to Cite

Sánchez-Roldán, Z., Martín-Morales, M., Valverde-Palacios, I., Valverde-Espinosa, I., & Zamorano, M. (2016). Study of potential advantages of pre-soaking on the properties of pre-cast concrete made with recycled coarse aggregate. Materiales De Construcción, 66(321), e076. https://doi.org/10.3989/mc.2016.01715

Issue

Section

Research Articles