Estudio de las ventajas potenciales del premojado en las propiedades del hormigón prefabricado con árido reciclado grueso
DOI:
https://doi.org/10.3989/mc.2016.01715Palabras clave:
Hormigón, Árido, Prefabricado, Tratamiento de residuos, TrabajabilidadResumen
El árido reciclado (AR) procedente de residuos de construcción y demolición se utiliza tradicionalmente en la elaboración de hormigón para diferentes aplicaciones. Debido principalmente al mayor contenido en agua requerido por el AR, la calidad del hormigón está determinada por la cantidad de AR reemplazado. El objetivo de este estudio es determinar si el AR premojado mejora las propiedades del hormigón prefabricado para mobiliario urbano, con bajas exigencias mecánicas y estructurales, en el que se sustituye el 100% de la fracción gruesa. Los resultados de los ensayos físicos y mecánicos realizados sobre muestras de hormigón en las cuales el AR se ha premojado usando cinco métodos diferentes se han comparado con una muestra de hormigón de referencia y una muestra de hormigón fabricada con AR no premojado. Los resultados muestran que el AR no premojado proporciona propiedades físico-mecánicas mejoradas en el hormigón prefabricado, a excepción de la trabajabilidad; los problemas derivados de una deficiente trabajabilidad pueden ser fácilmente corregidos con la incorporación de plastificantes en el proceso de fabricación.
Descargas
Citas
1. Solís-Guzmán, J.; Marrero, M.; Montes-Delgado, M.V.; Ramirez-de-Arellano, A. (2009) A Spanish model for quantification and management of construction waste. Waste. Manage. 29 [9], 2542–548. http://dx.doi.org/10.1016/j.wasman.2009.05.009 PMid:19523801
2. Jiménez, C.; Barra, M.; Valls, S.; Aponte, D.; Vázquez, E. (2014) Durability of recycled aggregate concrete designed with the Equivalent Mortar Volume (EMV) method: Validation under the Spanish context and its adaptation to Bolomey methodology. Mater. Construcc. 64 [313], e006. http://dx.doi.org/10.3989/mc.2013.00913
3. Vegas, I.; Iba-ez, J.A.; Lisbona, A.; Sáez de Cortazar, A.; Frías, M. (2011) Pre-normative research on the use of mixed recycled aggregates in unbound road sections. Constr Build Mater. 25 [5], 2674–2682. http://dx.doi.org/10.1016/j.conbuildmat.2010.12.018
4. Cuenca-Moyano, G.M.; Martín-Morales, M.; Valverde-Palacios, I.; Valverde-Espinosa, I.; Zamorano, M. (2014) Influence of pre-soaked recycled fine aggregate on the properties of masonry mortar. Constr Build Mater. 70, 71–79. http://dx.doi.org/10.1016/j.conbuildmat.2014.07.098
5. Saiz-Martínez, P.; González-Cortina, M.; Fernández-Martínez, F. (2015) Characterization and influence of fine recycled aggregates on masonry mortars properties. Mater. Construcc. 65 [319], e058. http://dx.doi.org/10.3989/mc.2015.06014
6. Medina, C.; Juan, A.; Frías, M.; Sánchez de Rojas, M.I.; Moran, J. Ma.; Guerra. M.I. (2011) Characterization of concrete made with recycled aggregate from ceramic sanitary ware. Mater Construcc. 61 [304], 533–546. http://dx.doi.org/10.3989/mc.2011.59710
7. Mas, B.; Cladera, A.; Del Olmo, T.; Pitarch, F. (2012) Influence of the amount of mixed recycled aggregates on the properties of concrete for non-structural use. Constr. Build. Mater. 27 [1], 612–622. http://dx.doi.org/10.1016/j.conbuildmat.2011.06.073
8. Poon, C.S.; Kou, S.C.; Lam, L. (2002) Use of recycled aggregates in molded concrete bricks and blocks. Constr Build Mater. 16 [5], 281–289. http://dx.doi.org/10.1016/S0950-0618(02)00019-3
9. Jankovic, K.; Nikolic, D.; Bojovic, D. (2012) Concrete paving blocks and flags made with crushed brick as aggregate. Constr. Build. Mater. 28 [1], 659–663. http://dx.doi.org/10.1016/j.conbuildmat.2011.10.036
10. López Gayarre, L.; López-Colina, C.; Serrano, M.A.; López-Martínez, A. (2013) Manufacture of concrete kerbs and floor blocks with recycled aggregate from C&DW. Constr. Build. Mater. 40, 1193–1199. http://dx.doi.org/10.1016/j.conbuildmat.2011.11.040
11. Xiao, Z.; Ling, T.Z.; Kou, S.C.; Wang, Q.; Poon, C.S. (2011) Use of wastes derived from earthquakes for the production of concrete masonry partition wall blocks. Waste Manage. 31 [8], 1859–1866. http://dx.doi.org/10.1016/j.wasman.2011.04.010 PMid:21570277
12. Poon, C.S.; Shui, Z.H.; Lam, L.; Fok, H.; Kou, S.C. (2004) Influence of moisture states of natural and recycled aggregates on the slump and compressive strength of concrete. Cement Concrete Res. 34 [1], 31–36. http://dx.doi.org/10.1016/S0008-8846(03)00186-8
13. Cachim, P.B. (2009) Mechanical properties of brick aggregate concrete. Constr. Build. Mater. 23 [3], 1292–1297. http://dx.doi.org/10.1016/j.conbuildmat.2008.07.023
14. Etxeberria, M.; Vázquez, E.; Marí, A.; Barra, M. (2007) Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete. Cement Concrete Res. 37 [5], 735–742. http://dx.doi.org/10.1016/j.cemconres.2007.02.002
15. Rahal, K. (2007) Mechanical properties of concrete with recycled coarse aggregate. Build Environ. 42 [1], 407–415. http://dx.doi.org/10.1016/j.buildenv.2005.07.033
16. De Juan, M.S.; Gutierrez, P.A. (2009) Study on the influence of attached mortar content on the properties of recycled concrete aggregate. Constr Build Mater. 23 [2], 872–877. http://dx.doi.org/10.1016/j.conbuildmat.2008.04.012
17. Debieb, F.; Courard, L.; Kenai, S.; Degeimbre, R. (2009) Roller compacted concrete with contaminated recycled aggregates. Constr Build Mater. 23 [11], 3382–3387. http://dx.doi.org/10.1016/j.conbuildmat.2009.06.031
18. Ferreira, L.; de Brito, J.; Barra, M. (2011) Influence of the pre-saturation of recycled coarse concrete aggregates on concrete properties. Mag Concrete. Res. 63 [8], 617–627. http://dx.doi.org/10.1680/macr.2011.63.8.617
19. González, J.G.; Robles, D.R.; Valdés, A.J.; Morán del Pozo, J.M.; Romero, M.I.G. (2013) Influence of Moisture States of Recycled Coarse Aggregates on the Slump Test. Adv Mat Res. 742, 379–383. http://dx.doi.org/10.4028/www.scientific.net/AMR.742.379
20. Mefteh, H.; Kebaïli, O.; Oucief, H.; Berredjem, L.; Arabi, N. (2013) Influence of moisture conditioning of recycled aggregates on the properties of fresh and hardened concrete. J Clean Prod. 54, 282–288. http://dx.doi.org/10.1016/j.jclepro.2013.05.009
21. Pelufo, M.J.; Domingo, A.; Ulloa, V.A.; Vergara, N.N. (2009) Analysis of moisture state of recycled coarse aggregate and its influence on compression strength of the concrete. Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium 2009, Valencia, Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures, 28 September – 2 October 2009, Universidad Politecnica de Valencia, Spain. http://hdl.handle.net/10251/6652.
22. Etxeberria, M.; Vázquez, E. (2010) Reacción álcali sílice en el hormigón debido al mortero adherido del árido reciclado, Alkali silica reaction in concrete induced by mortar adhered to recycled aggregate. Mater. Construcc. 60 [297], 47–58. http://dx.doi.org/10.3989/mc.2010.46508
23. Cabral, A.E.B.; Schalch, V.; Dal Molin, D.C.C.; Ribeiro, J.L.D. (2010) Mechanical properties modeling of recycled aggregate concrete. Constr Build Mater. 24 [4], 421–430. http://dx.doi.org/10.1016/j.conbuildmat.2009.10.011
24. Evangelista, L.; De Brito, J. (2007) Mechanical behaviour of concrete made with fine recycled concrete aggregates. Cement. Concrete. Comp. 29 [5], 397–401. http://dx.doi.org/10.1016/j.cemconcomp.2006.12.004
25. Kou, S. (2006) Reusing recycled aggregates in structural concrete. PhD Thesis, Politechnic University, The Hong Kong. 278.
26. Kou, S.C.; Poon, C.S.; Wan, H.W. (2012) Properties of concrete prepared with low-grade recycled aggregates. Constr Build Mater. 36, 881–889. http://dx.doi.org/10.1016/j.conbuildmat.2012.06.060
27. Poon, C.S.; Kou, S.C.; Wana, H.W.; Etxeberria, M. (2009) Properties of concrete blocks prepared with low grade recycled aggregates. Waste Manage. 29 [9], 2369–2377. http://dx.doi.org/10.1016/j.wasman.2009.02.018 PMid:19398196
28. Poon, C.S.; Chan, D. (2006) Paving blocks made with recycled concrete aggregate and crushed clay brick. Constr. Build. Mater. 20 [8], 569–577. http://dx.doi.org/10.1016/j.conbuildmat.2005.01.044
29. Soutsos, M.N.; Tang, K.; Millard, S.G. (2011) Use of recycled demolition aggregate in pre-cast products, phase II: Concrete paving blocks. Constr. Build. Mater. 25 [7], 3131–3143. http://dx.doi.org/10.1016/j.conbuildmat.2010.12.024
30. Gencel, O.; Ozel, C.; Koksal, F.; Erdogmus, E.; Martínez- Barrera, G.; Brostow, W. (2012) Properties of concrete paving blocks made with waste marble. J Clean Prod. 21 [1], 62–70. http://dx.doi.org/10.1016/j.jclepro.2011.08.023
31. Soutsos, M.N.; Tang, K.; Millard, S.G. (2012) The use of recycled demolition aggregate in pre-cast concrete products – Phase III: Concrete pavement flags. Constr. Build. Mater. 36, 674–680. http://dx.doi.org/10.1016/j.conbuildmat.2012.06.045
32. European standard EN 13198 (2004) Pre-cast concrete products. Street furniture and garden products. CEN.
33. Zega, C.J.; Di Maio, A.A. (2011) Use of recycled fine aggregate in concretes with durable requirements. Waste Manage 31 [11], 2336–2340. http://dx.doi.org/10.1016/j.wasman.2011.06.011 PMid:21775123
34. EHE-08. (2008) Ministerio de la Presidencia. Real Decreto 1247/2008, de 18 de julio, por el que se aprueba la Instrucción de hormigón estructural, Boletín Oficial del Estado, BOE 2008; 203 (suplemento):1-203.
35. European standard EN 933-1. (2012) Tests for geometrical properties of aggregates. Part 1: Determination of particle size distribution. Sieving method. CEN.
36. European standard EN 933-2. (1996) Tests for geometrical properties of aggregates. Part 2: Determination of particle size distribution. Test sieves, nominal size of apertures. CEN.
37. European standard EN 1097-6. (2000) Tests for mechanical and physical properties of aggregates. Part 6: Determination of particle density and water absorption. CEN.
38. European standard EN 1097-5. (2009) Tests for mechanical and physical properties of aggregates. Part 5: Determination of the water content by drying in a ventilated oven. CEN.
39. European standard EN 933-11. (2009) Tests for geometrical properties of aggregates, Part 11: Classification test for the constituents of coarse recycled aggregate. CEN.
40. Agrela, F.; De Juan, M.S.; Ayuso, J.; Geraldes, V.L.; Jiménez, J.R. (2011) Limiting properties in the characterisation of mixed recycled aggregates for use in the manufacture of concrete. Constr. Build. Mater. 25 [10], 3950–3955. http://dx.doi.org/10.1016/j.conbuildmat.2011.04.027
41. González-Fonteboa, B.; Martínez-Abella, F. (2008) Concretes with aggregates from demolition waste and silica fume. Materials and mechanical properties. Build. Environ. 43 [4], 429–437. http://dx.doi.org/10.1016/j.buildenv.2007.01.008
42. Martín-Morales, M.; Sánchez-Roldán, Z.; Zamorano, M.; Valverde-Palacios, I. (2013) Métodos granulométricos en la caracterización del árido reciclado para su uso en hormigón estructural. Size grading methods to characterize construction and demolition waste for its use in structural concrete. Mater. Construcc. 63 [310], 235–249. http://dx.doi.org/10.3989/mc.2013.mc.06511
43. European standard EN 12390-2. (2009) Testing fresh concrete. Part 2: Making and curing specimens for strength tests. CEN.
44. European standard EN 12350-2. (2009) Testing fresh concrete. Part 2: Slump-test. CEN.
45. European standard EN 12350-6. (2009) Testing fresh concrete. Part 6: Density. CEN.
46. European standard EN 12390-7. (2009) Testing hardened concrete. Part 7: Density of hardened concrete. CEN.
47. European standard EN 13369. (2006) Common rules for pre-cast concrete products. CEN.
48. European standard EN 12390-3. (2009) Testing hardened concrete. Part 3: Compressive strength of test specimens. CEN.
49. Ismail, S.; Ramli, M. (2014) Effect of Different Moisture States of Surface-Treated Recycled Concrete Aggregate on Properties of Fresh and Hardened Concrete, World Academy of Science, Engineering and Technology International Journal of Civil. Architectural Science and Engineering. 8: 65-71. International Science Index 85; 2014.
50. Rodrigues, F.; Evangelista, L.; de Brito, J. (2013) A New Method to Determine the Density and Water Absorption of Fine Recycled Aggregates. Materials. Researc. 16 [5], 1045–1051. http://dx.doi.org/10.1590/s1516-14392013005000074
51. Canovas, M.F. (2004) Hormigón, Séptima edición, España: Madrid. ISBN: 84-7493-125-8.
52. López-Gayarre, F.; Serna, P.; Domingo-Cabo, A.; Serrano- López, A.; López-Colina, C. (2009) Influence of recycled aggregate quality and proportioning criteria on recycled concrete properties. Waste. Manage. 29 [12], 3022–3028. http://dx.doi.org/10.1016/j.wasman.2009.07.010 PMid:19709870 53. Bustillo Revuelta, M. (2008) Hormigones y Morteros, Fueyo Editores, España: Madrid. ISBN: 978-84-935279-1-4.
54. Pérez-Benedicto, J.A.; del Río-Merino, M.; Peralta-Canudo, J.L.; de la Rosa-La Mata, M. (2012) Mechanical characteristics of concrete with recycled aggregates coming from prefabricated discarded units. Mater. Construcc. 62 [305] 25–37. http://dx.doi.org/10.3989/mc.2011.62110
55. Duan, Z.H.; Poon, C.H. (2014) Properties of recycled aggregate concrete made with recycled aggregates with different amounts of old adhered mortars. Mater. Des. 58, 19–29. http://dx.doi.org/10.1016/j.matdes.2014.01.044
56. Salem, R.M.; Burdette, E.G. (1998) Role of chemical and mineral admixture on physical properties and frost-resistance of recycled aggregate concrete. ACI Mater. J. 95 [5], 558–563.
57. Soutsos, M.N.; Tang, K.; Millard, S.G.; (2011) Concrete building blocks made with recycled demolition aggregate. Constr. Build. Mater. 25 [2], 726–735. http://dx.doi.org/10.1016/j.conbuildmat.2010.07.014
58. De Brito, J.; Saikia, N. (2013) Chapter 5: Use of Construction and Demolition Waste as Aggregate: Properties of Concrete. In: De Brito J, Saikia N. Recycled Aggregate in Concrete, Green Energy and Technology, Springer-Verlag London. 54: 229–337. http://dx.doi.org/10.1007/978-1-4471-4540-0_5
59. Sánchez de Juan, M. (2005) Estudio sobre la utilización de árido reciclado para la fabricación de hormigón estructural (Study on the use of recycled aggregate in structural concrete). Tesis Doctoral. Universidad Politécnica de Madrid. ETSI de Caminos, Canales y Puertos, España: Madrid. 502.
60. López Gayarre, F. (2008) Influencia de la variación de los parámetros de dosificación y fabricación de hormigón reciclado estructural sobre sus propiedades físicas y mecánicas, Tesis Doctoral, Universidad de Oviedo, España: Gijón. 310.
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2016 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Puede consultar desde aquí la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.