Materiales de Construcción, Vol 66, No 324 (2016)

Characterization of gypsum plasterboard with polyurethane foam waste reinforced with polypropylene fibers


https://doi.org/10.3989/mc.2016.06015

L. Alameda
Departamento de Construcciones Arquitectónicas e Ingeniería de la Construcción y del Terreno, Universidad de Burgos, Spain

V. Calderón
Departamento de Construcciones Arquitectónicas e Ingeniería de la Construcción y del Terreno, Universidad de Burgos, Spain

C. Junco
Departamento de Construcciones Arquitectónicas e Ingeniería de la Construcción y del Terreno, Universidad de Burgos, Spain

A. Rodríguez
Departamento de Construcciones Arquitectónicas e Ingeniería de la Construcción y del Terreno, Universidad de Burgos, Spain

J. Gadea
Departamento de Construcciones Arquitectónicas e Ingeniería de la Construcción y del Terreno, Universidad de Burgos, Spain

S. Gutiérrez-González
Departamento de Construcciones Arquitectónicas e Ingeniería de la Construcción y del Terreno, Universidad de Burgos, Spain

Abstract


Gypsum plasterboard that incorporates various combinations of polyurethane foam waste and polypropylene fibers in its matrix is studied. The prefabricated material was characterized in a series of standardized tests: bulk density, maximum breaking load under flexion stress, total water absorption, surface hardness, thermal properties, and reaction to fire performance. Polypropylene fibers were added to the polyurethane gypsum composites to improve the mechanical behavior of the plasterboard under loading. The results indicate that increased quantities of polymer waste led to significant reductions in the weight/surface ratio, the mechanical strength and the surface hardness of the gypsum, as well as improving its thermal resistance. The polypropylene fibers showed good adhesion to the polymer and the gypsum matrix, which enhanced the mechanical performance and the absorption capacity of these compounds. The non-combustibility test demonstrated the potential of the new material for use in internal linings.

Keywords


Gypsum plasterboard; Polyurethane foam waste; Polypropylene fibers; Non-combustibility test

Full Text:


HTML PDF XML

References


Chwieduk, D. (2003) Towards sustainable-energy buildings. Appl Ener. 76 [1-3], 211-17. https://doi.org/10.1016/S0306-2619(03)00059-X

Medineckiene, M.; Turskis, Z.; Zavadskas, E.K. (2010) Sustainable construction taking into account the building impact on the environment. J Environ Eng Landscape Manag. 18 [2], 118-27. https://doi.org/10.3846/jeelm.2010.14

Broun, R.; Menzies, G. (2011) Life cycle energy and environmental analysis of partition walls systems in UK. Procedia Eng. 21, 864-73. 2011. 11.2088

Rodríguez-Orejón, A.; Del Río-Merino; M., Fernández- Martínez, F. (2014) Characterization mixtures of thick gypsum with addition of treated waste from laminated plasterboards. Mater. Construcc. 64 [314], 1-7. https://doi.org/10.3989/mc.2014.03413

Serna, A.; Del Río, M.; Gabriel Palomo, J.; González, M. (2012) Improvement of gypsum plaster strain capacity by the addition of rubber particles from recycled tyres. Constr Build Mater. 35, 633-41. https://doi.org/10.1016/j.conbuildmat.2012.04.093

Tadeu, A.; Moreira, A.; António, J.; Simıes, N.; Simıes, I. (2014) Thermal delay provided by floors containing layers that incorporate expanded cork granule waste. Energ Build. 68, 611-9. https://doi.org/10.1016/j.enbuild.2013.10.007

Ahmed, A.; Ugai, K.; Kame, T. (2011) Investigation of recycled gypsum in conjunction with waste plastic trays for ground improvement. Constr Build Mater. 25, 208-17. https://doi.org/10.1016/j.conbuildmat.2010.06.036

Rodríguez, A.; Gutiérrez-González, S.; Horgnies, M.; Calderón, V. (2013) Design and properties of plaster mortars manufactured with ladle furnace slag. Mater Des. 52, 987-94. https://doi.org/10.1016/j.matdes.2013.06.041

Smakosz, A .; Tejchman, J. (2014) Evaluation of strength, deformability and failure mode of composite structural insulated panels. Mater Des. 54, 1068-82. https://doi.org/10.1016/j.matdes.2013.09.032

Melo, M.O.B.C.; Da Silva, L.B.; Coutinho, A.S.; Sousa, V.; Perazzo, N. (2012) Energy efficiency in building installations using thermal insulating materials in northeast Brazil. Energ Build. 47, 35-43. https://doi.org/10.1016/j.enbuild.2011.11.021

González Madariaga, F.J.; Lloveras Macia, J. (2008) EPS (expanded polystyrene) recycled blends mixed with plaster or stucco, some applications in building industry. Inf Constr. 60 [509], 35-43. https://doi.org/10.3989/ic.2008.v60.i509.589

Herrero, S.; Mayor, P.; Hernández Olivares, J. (2013) Influence of proportion and particle size gradation of rubber from end-of-life tires on mechanical, thermal and acoustic properties of plaster-rubber mortars. Mater Des. 47, 633-42. https://doi.org/10.1016/j.matdes.2012.12.063

Alonso, J.A.; Reyes, E.; Gálvez, J.C. (2013) Study of the cracking of sandwich panels of plasterboard and rockwool. Mater. Construcc. 63 [311], 403-421.

Agulló, L.; Aguado, A.; Garcia, T. (2006) Study of the use of paper manufacturing waste in plaster composite mixtures. Build Environ. 41 [6], 821-7. https://doi.org/10.1016/j.buildenv.2005.03.011

Gutiérrez-González, S.; Gadea, J.; Rodríguez, A.; Junco, C.; Calderón, V. (2012) Lightweight plaster materials with enhanced thermal properties made with polyurethane foam wastes. Constr Build Mater.28, 653-8. https://doi.org/10.1016/j.conbuildmat.2011.10.055

Eve, S.; Gomina, M.; Orange, G. (2004) Effects of polyamide and polypropylene fibres on the setting and the mechanical properties of plaster. Key Eng Mater. 264-268, 2531-6. https://doi.org/10.4028/www.scientific.net/KEM.264-268.2531

Eve, S.; Gomina, M.; Hamel, J.; Orange, G. (2006) Investigation of the setting of polyamide fibre/latex-filled plaster composites. J Eur Ceram Soc. 26, 2541-6. https://doi.org/10.1016/j.jeurceramsoc.2005.07.063

Liu, K.; Wu, Y-F.; Jiang, X.L. (2008) Shear strength of concrete filled glass fiber reinforced gypsum walls. Mater Struct. 41 [4], 649-62. https://doi.org/10.1617/s11527-007-9271-8

EN 13279-1:2008. Gypsum binders and Gypsum Plasters. Part 1: Definitions and requirements.

EN 13279-2: 2005. Gypsum binders and gypsum plasters - Part 2: Test methods

EN 520: 2005 + A1. Gypsum plasterboards. Definitions, specifications and test methods.

EN 12667:2001. Thermal performance of building materials and products. Determination of thermal resistance by means of guarded hot plate and heat flow meter methods. Products of high and medium thermal resistance.

EN ISO 1182:2010. Reaction to fire tests for building products Non-combustibility test.

Ciudad, A.; Lacasta, A.M.; Haurie, L.; Formosa, J.; Chimenos, J.M. (2011) Improvement of passive fire protection in a gypsum panel by adding inorganic fillers: Experiment and theory. Appl Therm Eng. 31, 3971-8. https://doi.org/10.1016/j.applthermaleng.2011.07.048

Panesar, D.K.; Shindman, B. (2012) The mechanical, transport and thermal properties of mortar and concrete containing waste cork. Cem Concr Compos. 34, 982-92. https://doi.org/10.1016/j.cemconcomp.2012.06.003

Vasconcelos, G.; LourenÁo, P.B.; Camıes, A.; Martins, A.; Cunha, S. (2015) Evaluation of the performance of recycled textile fibres in the mechanical behaviour of a gypsum and cork composite material. Cem Concr Compos. 58, 29-39. https://doi.org/10.1016/j.cemconcomp.2015.01.001

Gencela, O.; del Coz Diaz, J.J.; Sutcuc, M.; Koksald, F.T.; Alvarez Rabanalb, F.P.; Martinez-Barrerae, G.; Brostowf, W. (2014) Properties of gypsum composites containing vermiculite and polypropylene fibers: Numerical and experim ental results. Energ Build. 70, 135-44. https://doi.org/10.1016/j.enbuild.2013.11.047

Jarabo, R.; Fuente, E.; Monte, M.C.; Mutjé, P.; Negro, C. (2012) Use of cellulose fibers from hemp core in fibercement production. Effect on flocculation, retention, drainage and product properties. Ind Crops Prod. 39, 89-96. https://doi.org/10.1016/j.indcrop.2012.02.017

Aghazadeh, J.; Sangghaleh, A.; Nazaric, A.; Pourjavad, N. (2011) Analytical modeling of strength in randomly oriented PP and PPTA short fiber reinforced gypsum composites. Comp Mater Sci. 50 [5], 1619-24. https://doi.org/10.1016/j.commatsci.2010.12.020

Dubois, S.; Lebeau, F. (2013) Design, construction and validation of a guarded hot plate apparatus for thermal conductivity measurement of high thickness crop-based specimens. Mater Struct. 48[1-2] 407-21. https://doi.org/10.1617/s11527-013-0192-4

Gutiérrez-González, S.; Gadea, J.; Rodríguez, A.; Blanco-Varela, M.T.; Calderón, V. (2012) Compatibility between gypsum and polyamide waste to produce lightweight plaster with enhanced thermal properties. Constr Build Mater. 34, 179-85. https://doi.org/10.1016/j.conbuildmat.2012.02.061

EN 12524:2000. Building materials and products. Hygrothermal properties. Tabulated design values.

Commission Decision of 8 February 2000 implementing Council Directive 89/106/EEC as regards the classification of the reaction to fire performance of construction products. Official Journal of the European Communities No L 50. 23.2.2000.

Binici, H.; Aksogan, O.; Nuri Bodur; M.; Akca, E.; Kapur, S. (2007) Thermal isolation and mechanical properties of fibre reinforced mud bricks as wall materials. Constr Build Mater. 21, 901-6. https://doi.org/10.1016/j.conbuildmat.2005.11.004

Spanish Building Code (CTE DB-SI).

EN ISO 1716:2010. Reaction to fire tests for products - Determination of the gross heat of combustion (calorific value).

EN 13823-SBI: 2002. Fire technical testing of building products.

REAL DECRETO 110/2008, de 1 de febrero.




Copyright (c) 2016 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es