Materiales de Construcción, Vol 67, No 325 (2017)

New nanomaterials for applications in conservation and restoration of stony materials: A review


https://doi.org/10.3989/mc.2017.07616

A. Sierra-Fernandez
Instituto de Geociencias, CSIC, UCM - Department of Materials Science and Engineering and Chemical Engineering. Carlos III University of Madrid, Spain
orcid http://orcid.org/0000-0002-7874-4742

L. S. Gomez-Villalba
Instituto de Geociencias, CSIC, UCM, Spain
orcid http://orcid.org/0000-0002-8755-8191

M. E. Rabanal
Department of Materials Science and Engineering and Chemical Engineering. Carlos III University of Madrid - Instituto Tecnológico de Química y Materiales Alvaro Alonso Barba (IAAB-UC3M), Spain
orcid http://orcid.org/0000-0002-5090-6498

R. Fort
Instituto de Geociencias, CSIC, UCM, Spain
orcid http://orcid.org/0000-0001-9967-2824

Abstract


In recent times, nanomaterials have been applied in the construction and maintenance of the worldÅLs cultural heritage with the aim of improving the consolidation and protection treatments of damaged stone. These nanomaterials include important advantages that could solve many problems found in the traditional interventions. The present paper aims to carry out a review of the state of art on the application of nanotechnology to the conservation and restoration of the stony cultural heritage. We highlight the different types of nanoparticles currently used to produce conservation treatments with enhanced material properties and novel functionalities.

Keywords


Nanotechnology; Cultural heritage; Stone; Mortar; Durability

Full Text:


HTML PDF XML

References


Giorgi, R.; Dei, L.; Baglioni, P. (2000) A new method for consolidating wall paintings based on dispersions of lime in alcohol. Stud. Conserv., [45], 154-161. https://doi.org/10.1179/sic.2000.45.3.154

Dei, L.; Salvadori, B. (2006) Nanotechnology in cultural heritage conservation: nanometric slaked lime saves architectonic and artistic surfaces from decay. J. Cult. Herit., [7], 110-115. https://doi.org/10.1016/j.culher.2006.02.001

Manoudis, P.; Papadopoulou, S.; Karapanagiotis, I.; Tsakalof, A.; Zuburtikudis, I.; Panayiotou, C. (2007) Polymer-Silica nanoparticles composite films as protective coatings for stone-based monuments. J. Phys Conf Ser., [61], 1361-1365. https://doi.org/10.1088/1742-6596/61/1/269

Linsebigler, A.; LLu, G.; Yates, J.T. (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev., [95], 735-758. https://doi.org/10.1021/cr00035a013

Munafò, P.; Battista Goffredo, G.; Quaglirini, E. (2015) TiO2-based nanocoatings for preserving architectural Stone surfaces: An overview. Constr. Build. Mater., [84], 1: 201-218.

Abd Aziz, A.; Kaan Cheng, C.; Ibrahim, S.; Matheswaran, M.; Saravanan, P. (2012) Visible light improved, photocatalytic activity of magnetically separable titania nanocomposite. Chem. Eng. J., [183], 349-356. https://doi.org/10.1016/j.cej.2012.01.006

Kapridaki, C.; Pinho, L.; Mosquera, M.J. (2014) Producing photoactive, transparent and hydrophobic SiO2-crystalline TiO2 nanocomposites at ambient conditions with application as self-cleaning coating. Appl. Catal. B., [156-157], 416-427. https://doi.org/10.1016/j.apcatb.2014.03.042

Colangiuli, D; Calia, A; Bianco, N. (2015) Novel multifunctional coatings with photocatalytic and hydrophobic properties for the preservation of the stone building heritage. Constr. Build. Mater., [93], 189-196. https://doi.org/10.1016/j.conbuildmat.2015.05.100

Facio, D.S.; Mosquera, M.J. (2013) Simple strategy for producing superhydrophobic coatings in situ on a building substrate. ACS Appl. Mater. Interfaces, 5 [15], 7517-26. https://doi.org/10.1021/am401826g PMid:23855260

Mohammad Rabea, A.; Mohseni, M.; Mirabedini, S.M.; Hashemi Tabatabaei, M. (2012) Surface analysis and antigraffiti behaviour of a weathered polyurethane-based coating embedded with hydrophobic nano silica. Appl. Surf. Sci., 258 [10], 4391-4396. https://doi.org/10.1016/j.apsusc.2011.12.123

Licchelli, M.; Malagodi, M.; Weththimuni, M.; Zanchi, C. (2014) Anti-graffiti nanocomposite materials for a surface protection of a very porous stone. Appl. Phys. A Mater. Sci. Process., 116 [4], 1525-1539. https://doi.org/10.1007/s00339-014-8356-9

Gruyaert, E.; Van Tittelboom, K.; Sucaet, J.; Anrijs, J.; Van Vlierberghe, S.; Dubruel, P.; G. De Geest, B.; Remon J-P.; De Belie, N. (2016) Capsules with evolving brittleness to resist the preparation of self-healing concrete. Mater. Constr., 66 [323], e092.

Ciliberto, E.; Condorelli, G.G.; La Delfa, S.; Viscuso, E. (2008) Nanoparticles of Sr(OH)2: synthesis in homogeneous phase at low temperature and application for cultural heritage artefacts. Appl. Phys. A-Mater. Sci. Process., 92 [1], 137-141. https://doi.org/10.1007/s00339-008-4464-8

Danielle, V.; Taglieri, G.; Quaresima, R. (2008) The nanolimes in cultural heritage conservation: characterization and analysis of the carbonation process, J. Cult. Herit., 9 [3], 294-301. https://doi.org/10.1016/j.culher.2007.10.007

.

Ziegenbalds, G. (2008) Colloidal calcium hydroxide: a new material for consolidation and conservation of carbonate stone, En: 11th International congress on deterioration and conservation of stone III, 1109.

Gomez-Villalba, L. S.; López-Arce, P.; Zornoza-Indart, A.; Alvarez de Buergo, M.; Fort, R. (2012, April) Modern restoration products based on nanoparticles: The case of the Nano-Lime, interaction and compatibility with limestone and dolostones surfaces, advantages and limitations. In EGU General Assembly Conference Abstracts, (Vol. 14, p. 2418).

López-Arce, P.; Gomez-Villalba, L.S.; Martínez-Ramírez, S.; Álvarez de Buergo, M.; Fort, R. (2011) Influence of relative humidity on the carbonation of calcium hydroxide nanoparticles and the formation of calcium carbonate polymorphs. Powder. Technol., 205 [1], 263-269. https://doi.org/10.1016/j.powtec.2010.09.026

López-Arce, P.; Gomez-Villalba, L.S.; Pinho, L.; Fernández- Valle, M.E.; Álvarez de Buergo, M.; Fort, R. (2010) Influence of porosity and relative humidity on consolidation of dolostone with calcium hydroxide nanoparticles: effectiveness assessment with non-destructive techniques. Mater. Charact., [61], 168-184. https://doi.org/10.1016/j.matchar.2009.11.007

Gómez, L.S.; López-Arce, P.; Álvarez de Buergo, M.; Fort, R. (2009) Calcium hydroxide nanoparticles crystallization on carbonates stone: dynamic experiments with heating/ cooling and Peltier stage ESEM. Acta Microsc., [18], 105-106. ISSN 0798-4545

Rodríguez-Navarro, C., Vettori, I., Ruiz-Agudo, E. (2016) Kinetics and mechanism of calcium hydroxide conversion into calcium alkoxides: Implications in heritage conservation using nanolimes. Langmuir, 32 [20], 5183-5194. https://doi.org/10.1021/acs.langmuir.6b01065 PMid:27149182

Daniele, V.; Taglieri, G. (2010) Nanolime suspensions applied on natural lithotypes: the influence of concentration and residual water content on carbonatation process and on treatment effectiveness. J. Cult. Herit., 11 [1], 102-106. https://doi.org/10.1016/j.culher.2009.04.001

Gómez-Villalba, L. S.; López-Arce, P.; Fort, R. (2012) Nucleation of CaCO3 polymorphs from a colloidal alcoholic solution of Ca(OH)2 nanocrystals exposed to low humidity conditions. Appl. Phys. A, 106 [1], 213-217. https://doi.org/10.1007/s00339-011-6550-6

Gomez-Villalba, L. S., López-Arce, P., de Buergo, M. A., Zornoza-Indart, A., Fort, R. (2013) Mineralogical and textural considerations in the assessment of aesthetic changes in dolostones by effect of treatments with Ca(OH)2 nanoparticles. Science and Technology for the Conservation of Cultural Heritage, 235-329. https://doi.org/10.1201/b15577-55

Sierra-Fernández, A.; Gómez-Villalba, L.S.; Milosevic, O.; Fort, R.; Rabanal, M.E. (2014) Synthesis and morphostructural characterization of nanostructured magnesium hydroxide obtained by a hydrothermal method. Ceram. Int., [40], 12285-12292. https://doi.org/10.1016/j.ceramint.2014.04.073

Gómez-Villalba, L.S.; López-Arce, P.; Álvarez de Buergo, M.; Fort, R. (2012) Atomic defects and their relationship to aragonite-calcite transformation in portlandite nanocrystal carbonation. Cryst. Growth Des., 12 [10], 4844-4852. https://doi.org/10.1021/cg300628m

López-Arce, P.; Zornoza-Indart, A. (2015) Carbonation acceleration of calcium hydroxide nanoparticles: induced by yeast fermentation. Appl. Phys. A., 120 [4], 1475-1495. https://doi.org/10.1007/s00339-015-9341-7

Hansen, E.; Doehne, E.; Fidler, J.; Larson, J.; Martin, B.; Matteini, M.; Rodríguez-Navarro, C.; Sebastian Pardo, E.; Price, C.; de Tagle, A.; Teutonico, J.-M, Weiss, N.R. (2003) A review of selected inorganic consolidants and protective treatments for porous calcareous materials. Reviews in Conservation, [4], 13-25. https://doi.org/10.1179/sic.2003.48.supplement-1.13

Gómez-Villalba, L.S.; López-Arce, P.; Álvarez de Buergo, M.; Fort, R. (2011) Structural stability of a coloidal solution of Ca(OH)2 nanocrystals exposed to high relative humidity conditions. Appl. Phys. A., 104, [4], 1249-1254. https://doi.org/10.1007/s00339-011-6457-2

López-Arce, P.; Zornoza-Indart, A.; Gómez-Villalba, L.S.; Fort, R. (2012) Short-and Longer-Term Consolidation Effects of Portlandite (CaOH)2 Nanoparticles in Carbonate Stones. J. Mater. Civil Eng., 25 [11], 1655-1665.

Gómez-Villalba, L.S.; López-Arce, P.; Zornoza, A.; Alvarez, De Buergo, M.; Fort, R. (2011) Evaluation of a consolidation treatment in dolostones by mean of calcium hydroxide nanoparticles in high relative humidity conditions. Bol. Soc. Esp. Ceram. V., 50 [2] 85-92.

Sierra-Fernández, A.; Gómez-Villalba, L.S.; Rabanal, M.E.; Fort, R. (2014) New consolidant product based on nanoparticles to preserve the dolomitic Stone heritage. M. Rogerio Candelera (Ed.), Science, Technology and Cultural Heritage, pp. 139-144. ISBN 9781315712420.

Arizzi, A.; Gómez-Villalba, L.S.; López-Arce, P.; Cultrone, G.; Fort, R. (2015) Lime mortar consolidation with nanostructured calcium hydroxide dispersions: the efficacy of different consolidating products for heritage conservation. Eur. J. Mineral., [27], 311-323. https://doi.org/10.1127/ejm/2015/0027-2437

Drdácky_, M.; Slí_ková, Z.; Ziegenbalg, G. (2009) A nano approach to consolidation of degraded historic lime mortars, J. Nano Res., [8], 13-22. https://doi.org/10.4028/www.scientific.net/JNanoR.8.13

Borsoi, G.; Tavares, M.; Veiga, R.; Silva, A. S. (2012) Microstructural characterization of consolidant products for historical renders: an innovative nanostructured lime dispersion and a more traditional ethyl silicate limewater solution. Microsc. Microanal., 18 [5], 1181-1189. https://doi.org/10.1017/S1431927612001341 PMid:23095450

Tucker, M.E.; Wright, V.P. Carbonate. (1991) Carbonate Sedimentology, Editorial Wiley-Blackwell.

Deng, M.; Mingshu, T. (1993) Measures to inhibit alkalidolomite reaction. Cement Concrete Res., 23 [5], 1115-1120.

Ayora, C.; Taberner, C.; Saaltink, M.W.; Carrera, J. (1998) The genesis of dedolomites: A discussion based on reactive transport modeling. J. Hydrol., [209], 346-365. https://doi.org/10.1016/S0022-1694(98)00095-X

García, E.; Alfonso, P.; Tauler, E.; Galí, S. (2003) Surface alteration of dolomite in dedolomitization reaction in alkaline media. Cement Concrete Res., 33 [9], 1449-1456. https://doi.org/10.1016/S0008-8846(03)00096-6

Bérubé, M-A.; Choquette, M.; Locat, J. (1990) Effects of lime on common soil and rock forming minerals. Appl. Clay Sci., [5], 145-163. https://doi.org/10.1016/0169-1317(90)90020-P

Chelazzi, D.; Poggi, G.; Jaidar, Y. (2013) Hydroxide nanoparticles for cultural heritage: consolidation and protection of wall paintings and carbonate materials. J. Colloid Interface Sci., [392], 42-49. https://doi.org/10.1016/j.jcis.2012.09.069 PMid:23123031

Karatasios, I.; Kilikoglou, V.; Colston, B.; Theoulakis, P.; Watt, D. (2007) Setting process of lime-based conservation mortars with barium hydroxide. Cement Concrete Res., 37 [6], 886-893. https://doi.org/10.1016/j.cemconres.2007.03.007

Delgado Rodrigues, J.; Ferreira Pinto, A.P. (2016) Laboratory and onsite study of barium hydroxide as a consolidant for high porosity limestones. J. Cult. Herit., [19], 467-476. https://doi.org/10.1016/j.culher.2015.10.002

Terada, J. (1953) Rhombohedral Crystals of Ba-Ca and Sr-Ca Double Carbonates. J. Phys. Soc. Jpn., [7], 432-434.

Ferreira Pinto, A.P.; Delgado-Rodrigues, J. (2008) Stone consolidation: The role of treatment procedures. J. Cult. Herit., 9 [1], 38-53. https://doi.org/10.1016/j.culher.2007.06.004

Lewin, S.Z.; Baer, N.S. (1974) Rationale of Barium Hydroxide-Urea Treatment of Decayed Stone. Stud. Conserv., 19, [1], 24-35. https://doi.org/10.1179/sic.1974.002

Schnabel, L. (1992) Evaluation of the barium hydroxideurea consolidation, in: J.D. Rodrigues, F. Henriques, F.T. Jeremias (Eds.), Proc. 7th Int. Cong. Deterioration and Conservation of Stone, Laboratório Nacional de Engenharia Civil (Publs.), Lisbon, 1063-1072.

Giorgi, R.; Ambrosi, M.; Toccafondi, N.; Baglioni, P. (2010) Nanoparticles for Cultural Heritage Conservation: Calcium and Barium Hydroxide Nanoparticles for Wall Painting Consolidation. Chemistry A European Journal, 16, [31], 9374-9382. https://doi.org/10.1002/chem.201001443 PMid:20658506

Baglioni, P.; Chelazzi, D.; Giorgi, R. (2015) Nanotechnologies in the conservation of cultural heritage. A compendium of materials and techniques. Edit. Springer. ISBN 978-94-017-9303-2 https://doi.org/10.1007/978-94-017-9303-2

Baglioni, P.; Giorgi, R. (2006) Soft and hard nanomaterials for restoration and conservation of cultural heritage. Soft Matter., [2], 293-303. https://doi.org/10.1039/b516442g

Karatasios, I.; Kilikoglou, V.; Theoulakis, P.; Colston, B.; Watt, D. (2008) Sulphate resistance of lime-based barium mortars. Cement Concrete Comp., 30 [9], 815-821. https://doi.org/10.1016/j.cemconcomp.2008.06.010

Yang, K.-H; Sim, J.-I.; Nam, S.-H. (2010) Enhancement of reactivity of calcium hydroxide-activated slag mortars by the addition of barium hydroxide. Constr. Build. Mater., 24 [3], 241-251. https://doi.org/10.1016/j.conbuildmat.2009.09.001

Slíí_ková, Z.; Drdácky_, M.; Viani, A. (2015) Consolidation of weak lime mortars by means of saturated solution of calcium hydroxide or barium hydroxide. J. Cult. Herit., 16, [4], 452-460. https://doi.org/10.1016/j.culher.2014.09.003

Licchelli, M.; Malagodi, M.; Weththimuni, M.; Zanchi, C. (2014) Nanoparticles for conservation of bio-calcarenite stone. Appl. Phys. A. Mater. Sci. Process., [114], 673-683. https://doi.org/10.1007/s00339-013-7973-z

Falchi, L.; Balliana, E.; Izzo, F.C.; Agostinetto, L.; Zendri, E. (2013) Distribution of nanosilica dispersions in Lecce stone. Sciences at Ca´Foscari, [1], 40-46.

Okubo, T.; Nakagawa, N.; Tsuchida, A. (2007) Drying dissipative patterns of colloidal crystals of silica spheres in organic solvents. Colloid Polym. Sci., [285], 1247-1255. https://doi.org/10.1007/s00396-007-1678-9

Okubo, T.; Kimura, K.; Tsuchida, A. (2008) Drying dissipative patterns of colloidal crystals of silica spheres on a cover glass at the regulated temperature and humidity. Colloid Polym. Sci., [286], 621-629. https://doi.org/10.1007/s00396-007-1808-4

Zornoza-Indart, A.; López-Arce, P. (2016) Silica nanoparticles (SiO2): Influence of relative humidity in stone consolidation. J. Cult. Herit., [18], 258-270. https://doi.org/10.1016/j.culher.2015.06.002

Ruffolo, S.A.; La Russa, M.F.; Ricca, M.; Belfiore, C.M.; Macchia, A.; Comite, V.; Pezzino, A.; Crisci, G.M. (2015) New insights on the consolidation of salt weathered limestone: the case study of Modica stone. Bull. Eng. Geol. Env., 1-10.

Zendri, E.; Biscontin, G.; Nardini, I.; Rialto, S. (2007) Characterization and reactivity of silicatic consolidants. Constr. Buildi. Mater., [21], 1098-1106. https://doi.org/10.1016/j.conbuildmat.2006.01.006

Aggarwal, P.; Pratap Singh, R.; Aggarwal, Y. (2015) Use of nano-silica in cement based materials-A review. Cogent Engineering, [2], 1078018. https://doi.org/10.1080/23311916.2015.1078018

Sáez del Bosque, I.F.; Martínez-Ramírez, S.; Blanco- Varela, M.T. (2015) Calorimetric study of the early stages of the nanosilica-tricalcium silicate hydration. Effect of temperature. Mater. Construc., 65 [320], e070.

Favaro, M.; Tomasin, P.; Ossola, F.; Vigato, P.A. (2008) A novel approach to consolidation of historical limestone: the calcium alkoxides. Appl. Organomet. Chem., 22 [12], 698-704. https://doi.org/10.1002/aoc.1462

Natali, I.; Tomasin, P.; Becherini, F.; Bernardi, A.; Ciantelli, C.; Favaro, M.; Favoni, O.; Forrat Pérez, V.J.; Olteanu, I.D.; Romero Sánchez, M.D.; Vivarelli, A.; Bonazza, A. (2015) Innovative consolidation products for Stone materials: field exposure tests as a valid approach for assessing durability. Heritage Science, 3 [6].

Ossola, F.; Tomasin, P.; De Zorzi, C.; El Habra, N.; Chiurato, M.; Favaro, M. (2012) New calcium alkoxides for consolidation of carbonate rocks. Influence of precursors characteristics on morphology, crystalline phase and consolidation effects. New J. Chem., [36], 2618-2624.

Favaro, M.; Chiurato, M.; Tomasin, P.; Ossola, F.; El Habra, N.; Brianese, N.; Svensson, I.; Beckers, E.; Forrat Pérez, V.; Romero Sánchez, M.D.; Bernirdi, A. (2014) Calcium and Magnesium Alkoxides for Conservation Treatment of Stone and Wood in Built Heritage. In Built Heritage: Monitoring Conservation Management, L. Toniolo, M. Boriani and G. Guidi Editors Book, Springer Berlin, 413-422.

Sassoni, E.; Naidu, S.; Scherer, G.W. (2011) The use of hydroxiapatite as a new inorganic consolidant for damaged carbonate stones. J. Cult. Herit., [12], 346-355. https://doi.org/10.1016/j.culher.2011.02.005

Sassoni, E.; Franzoni, E. (2014) Sugaring marble in the Monumental Cemetery in Bologna (Italy): characterization of naturally and artificially weathered samples and first results of consolidation by hydroxiapatite. Appl. Phys. A., 117 [4], 1893-1906. https://doi.org/10.1007/s00339-014-8629-3

Sassoni, E.; Franzoni, E.; Pigino, B.; Scherer, G.W.; Naidu, S. (2013) Consolidation of calcareous and siliceous sandstones by hydroxiapatite: comparison with TEOS-based consolidant. J. Cult. Herit., [14], 103-108. https://doi.org/10.1016/j.culher.2012.11.029

Yang, F-W.; Liu, Y.; Zhu Y.; Long, S.; Zuo, G-F.; Wang, C-Q.; Guo, F.; Zhang, B-J.; Jiang, S-W. (2012) Conservation of weathered historic sandstone with biomimetic apatite. Chin. Sci. Bull., [57], 2171-2176. https://doi.org/10.1007/s11434-012-5039-9

Naidu, S.; Scherer, G.W. (2014) Nucleation, growth and evolution of calcium phosphate films on calcite. J. Colloid Interface Sci., [435], 128-137. https://doi.org/10.1016/j.jcis.2014.08.018 PMid:25233226

Naidu, S.; Sassoni, E.; Scherer, G.W. (2011) New treatment for Corrosion-Resistant Coatings for Marble and Consolidation of Limestone, in Stefanaggi M., Vergès- Belmin V. (Eds), Jardins de Pierres - Conservation of stone in Parks, Gardens and Cemeteries, Paris, 22-24 June 2011, p. 289-294. ISBN: 2-905430-17-6

Franzoni, E.; Sassoni, E.; Graziani, G. (2015) Brushing, poultice or immersion? Role of the application technique on the performance of a novel hydroxiapatite-based consolidating treatment for limestone, J. Cult. Herit., [16], 173-184. https://doi.org/10.1016/j.culher.2014.05.009

Sassoni, E.; Graziani, G.; Franzoni, E. (2016) An innovative phosphate-based consolidant for limestone. Part 1: Effectiveness and compatibility in comparison with ethyl silicate. Constr. Build. Mater., [102], 918-930.

Sassoni, E.; Graziani, G.; Franzoni, E. (2016) An innovative phosphate-based consolidant for limestone. Part 2: Durability in comparison with ethyl silicate. Constr. Build. Mater., [102], 931-942. http://dx.doi.org/10.1016/j. conbuildmat.2015.10.202.

Ion, R-M.; Turcanu-Carutiu, D.; Fierascu, R-C.; Fierascu, I. (2014) Chalk Stone restoration with hydroxiapatite-based nanoparticles. SBMM, [12], 9: 24.

Ion, R-M.; Turcanu-Carutiu, D.; Fierascu, R-C.; Fierascu, I.; Bunghez, I-R.; Ion, M-L.; Teodorescu, S.; Vasilievici, G.; Raditoiu, V. (2015) Caoxite-hydroxyapatite composition as consolidating material for the chalk stone from Basarabi-Murfatlar chuches ensemble. Appl. Surf. Sci., [358], 612-618. https://doi.org/10.1016/j.apsusc.2015.08.196

Wheeler, G. (2005) Alkoxysilanes and the consolidation of stone. Getty Publications, LA, California, US.

Illescas, J.F.; Mosquera, M. (2011) Surfactant-Synthesized PDMS/Silica Nanomaterials Improve Robutness and Stain Resistance of Carbonate Stone. J. Phys. Chem. C., 115, [30], 14624-14634. https://doi.org/10.1021/jp203524p

Mosquera, M.J.; de los Santos, D.M.; Rivas, T. (2010) Surfactant-Synthesized Ormosils with Application to Stone Restoration. Langmuir, [26], 6737-6745. https://doi.org/10.1021/la9040979 PMid:20201576

Mosquera, M.J.; de los Santos, D.M.; Valdéz-Castro, L.; Esquivias, L. (2008) New route for producing crack- Free xerogels: obtaining uniform pore size, J. Non-Cryst. Solids., [354], 645-650. https://doi.org/10.1016/j.jnoncrysol.2007.07.095

De Rosario Amado, I.; Elhaddad, F.; Pan Cabo, A.; Mosquera, M.J. (2015) Effectiveness of a novel consolidant on granite: Laboratory and in situ results, Constr. Build. Mater., [76], 140-149. https://doi.org/10.1016/j.conbuildmat.2014.11.055

Simionescu, B.; Olaru, M.; Aflori, M. (2010) Silsesquioxane-based Hybrid Nanocomposite with Self-assembling Properties for Porous Limestones Conservation. High Perform. Polym., [22], 42-55. https://doi.org/10.1177/0954008308100905

Zornoza-Indart, A.; López-Arce, P.; Leal, N.; Simao, J.; Zoghlami, K. (2016) Consolidation of a Tunisian bioclastic calcarenite: From conventional ethyl silicate products to nanostructured and nanoparticle based consolidants. Constr. Build. Mater., 116 [30], 188-202. https://doi.org/10.1016/j.conbuildmat.2016.04.114

Scherer, G.W. (1990) Theory of Drying. J. Am. Ceram. Soc., 73 [1], 3-14. http://dx.doi.org/10.1111/j.1151-2916.1990. tb05082.x.

Miliani, C.; Velo-Simpson, M.L.; Scherer, G.W. (2007) Particle-modified consolidants: A study on the effect of particles on sol-gel properties and consolidation effectiveness. J. Cult. Herit., [8], 1-6. https://doi.org/10.1016/j.culher.2006.10.002

Escalante, M.R.; Valenza, J.; Scherer, G.W. (2000) Proceedings of the 9th International Congress on Deterioration and Conservation of Stone, Venice, 19-24 June, 2000, Fassina, V. (ed.) New York, Elsevier.

Aggelakopoulou, E.; Charles, P.; Acerra, M.E.; García, A.I.; Flatt, R.J.; Scherer, G.W. (2002) Rheology Optimization of Particle Modified Consolidants. MRS Proceedings, 712: II2.6.

Verganelaki, A.; Kilikoglou, V.; Karatasios, I.; Maravelaki- Kalaitzaki, P. (2014) A biomimetic approach to strengthen and protect construction materials with a novel calciumoxalate- silica nanocomposite. Constr. Build. Mater., [62], 8-17. https://doi.org/10.1016/j.conbuildmat.2014.01.079

Vázquez-Calvo, C.; Ávarez de Buergo, M.; Fort, R.; Varas- Muriel, M.J. (2007) Characterization of patinas by means of microscopic techniques. Mater. Charact., [58], 11-12: 1119-1132. https://doi.org/10.1016/j.matchar.2007.04.024

Verganelaki, A.; Kapridaki, C.; Maravelaki-Kalaitzaki, P. (2015) Modified tetraethoxysilane with nano-calcium oxalate in one-pot synthesis for protection of building materials. Ind. Eng. Chem. Res., [54], 7195-7206. https://doi.org/10.1021/acs.iecr.5b00247

Tuteja, A.; Choi, W.; Ma, M.; Mabry, J.M.; Mazzella S.A; Rutledge, G.C.; McKinley, G.H.; Cohen, R.E. (2007) Designing superoleophobic surfaces. Science, [318], 1618. https://doi.org/10.1126/science.1148326

Manoudis, P.N.; Karapanagiotis, I.; Tsakalof, A.; Zuburtikudis, I.; Panayiotou, C. (2009) Superhydrophobic composite films produced on various substrates. Langmuir, [24], 11225-11232.

Manoudis, P.N.; Karapanagiotis, I.; Tsakalof, A.; Zuburtikudis, I.; Kolinkeová, B.; Panayiotou, C. Superhydrophobic films for the protection of outdoor cultural heritage assets Appl. Phys. A, [97], 351-360.

Chao-Hua, X.; Shun-Tian, J.; Jing, Z.; Jian-Zhong, M. (2010) Large-area fabrication of superhydrophobic surfaces for practical applications: an overview. Sci. Tech. Adv. Mater., 11, [3],

De Ferri L., Lottici P.P., Lorenzi, A. Montenero A., Salvioli-Mariani E., (2011) Study of silica nanoparticles - polysiloxane hydrophobic treatments for stone-based monument protection. J. Cult. Herit., 12, [4], 356-363. https://doi.org/10.1016/j.culher.2011.02.006

La Russa, M.F.; Ruffolo, S.A.; Rovella, N.; Belfiore, C.M.; Palermo, A.M.; Guzzi, M.T.; Crisci, G.M. (2012) Multifunctional TiO2 coatings for Cultural Heritage. Prog. Org. Coat., [74], 186-191. https://doi.org/10.1016/j.porgcoat.2011.12.008

Kapridaki, C.; Maravelaki-Kalaitzaki, P. (2013) TiO2- SiO2-PDMS nano-composite hydrophobic coating with self-cleaning properties for marble protection. Prog. Org. Coat., 76 [2-3], 400-410. https://doi.org/10.1016/j.porgcoat.2012.10.006

Cappelletti, G.; Fermo, P.; Camiloni, M. (2015) Smart hybrid coatings for natural stones conservation. Prog. Org. Coat., s, [78], 511-516. https://doi.org/10.1016/j.porgcoat.2014.05.029

Söz, C.K., Yilgör, E., Yilgör, I. (2015) Influence of the coating method on the formation of superhydrophobic silicone-urea surfaces modified with fumed silica nanoparticles. Prog. Org. Coat., [84], 143-152. https://doi.org/10.1016/j.porgcoat.2015.03.015

Sun, M.; Luo, C.; Xu, L.; Ji, H.; Ouyang, Q.; Yu, D.; Chen, Y. (2005) Artificial lotus leaf by nanocasting, Langmuir, [21], 8978-8981.

Krumpfer, W.; McCarthy, T.J. (2010) Contact angle hysteresis: a different view and a trivial recipe for low hysteresis hydrophobic surfaces, Farad. Discuss., [146], 103-111. https://doi.org/10.1039/b925045j

Chen, W.; Fadeev, A.Y.; Hsieh, M.C.; Oner, D.; Youngblood, J.; McCarthy, T.J. (1999) Ultrahydrophobic and ultralyophobic surfaces: Some comments and examples Langmuir, 15 [10], 3395-3399.

Jung, C.; Bhushan, B. (2006) Contact angle, adhesion and friction properties of micro-and nanopatterned polymers for superhydrophobicity, Nanotechnology, 17 [19], 4970-4980.

Manoudis, P.N.; Karapanagiotis, I. (2014) Modification of the wettability of polymer surfaces using nanoparticles, Prog. Org. Coat., [77], 331-338. https://doi.org/10.1016/j.porgcoat.2013.10.007

Oner, D. T.; McCarthy, J. (2000) Ultrahydrophobic surfaces. Effects of topography lengthscales on wettability, Langmuir, 16 [20], 294.

Takeshita, N.; Paradis, L.A.; Oner, D.; McCarthy, T.J.; Chen, W. (2004) Simultaneous tailoring of surface topography and chemical structure for controlled wettability. Langmuir, 20 [19], 8131-8136. https://doi.org/10.1021/la049404l PMid:15350083

Cassie, A.B.D.; Baxter, S. (1944), Wettability of porous surfaces, T. Faraday Soc., 40546-551. https://doi.org/10.1039/tf9444000546

Söz, C.K.; Yilgör, E.; Yilgör, I.; (2015) Influence of the average surface roughness on the formation of superhydrophobic polymer surfaces through spin-coating with hydrophobic fumed silica. Polymer, [62], 118-128.

Domingo, C.; Álvarez de Buergo, M.; Sánchez-Cortés, S.; Fort, R.; García-Ramos, J.V. Possibilities of the molecular Infrared and Raman spectroscopies to monitor the polymerization process of water repellents and consolidants in stones. Prog. Org. Coat., 63 [1], 5-12.

Lampakis, D.; Manoudis, P.N.; Karapanagiotis, I. (2013) Monitoring the polymerization process of Si-based superhydrophobic coatings using Raman spectroscopy. Prog. Org. Coat., [76], 488-494. https://doi.org/10.1016/j.porgcoat.2012.11.002

Illescas, J.F.; Mosquera, M.J. (2012) Producing Surfactant- Synthesized Nanomaterials In Situ on a Building Substrate, without Volatile Organic Compounds. ACS Appl. Mater. Inter., [4], 4259-4269. https://doi.org/10.1021/am300964q PMid:22803788

Sparks, B.J.; Hoff, E.F.T.; Xiong, L.; Goetz, J.T.; Patton, D.L. (2013) Superhydrophobic Hybrid-Inorganic-Organic Thiol-ene Surfaces Fabricated via Spray-Deposition and Photopolymerization. ACS Appl. Mater. Inter., [5], 1811-1817. https://doi.org/10.1021/am303165e PMid:23410965

Xiong, L.; Kendrick, L.L.; Heusser, H.; Webb, J.C.; Sparks, B.J.; Goetz, J.T.; Guo, W.; Stafford, C.M.; Blanton, M.D.; Nazarenko, S.; Patton, D.L. (2014) Spray-Deposition and Photopolimerization of Organic-Inorganic Thiol-ene Resins for Fabrication of Superamphiphobic Surfaces. ACS Appl. Mater. Inter., [9], 10763-74. https://doi.org/10.1021/am502691g PMid:24911278

Pedna, A.; Pinho, L.; Frediani, P.; Mosquera, M.J. (2016) Obtaining SiO2-fluorinated PLA bionanocomposites with application as reversible and higly-hydrophobic coatings of buildings. Prog. Org. Coat., [90], 91-100. https://doi.org/10.1016/j.porgcoat.2015.09.024

Álvarez de Buergo, M.; Fort, R. (2001) A basic methodology for evaluating and selecting water-proofing treatments apllied to carbonatic materials. Prog. Org. Coat., [43], 258-266 https://doi.org/10.1016/S0300-9440(01)00204-1

Verho, T.; Bower, C.; Andrew, P.; Franssila, S.; Ikkala, O.; Ras, R.H.A. (2011) Mechanically durable superhydrophobic surfaces, Adv. Mater., 23 [5], 673-678.

Beydoun, D.; Amal, D.; Lowand, G.; McEvoy, S. (1999) Role of nanoparticles in photocatalysis. J. Nanopart. Res., [1], 439-458. https://doi.org/10.1023/A:1010044830871

Bahnemann, D. (2004). Photocatalytic water treatment: Solar energy applications. Sol. Ener., [77], 445-459. https://doi.org/10.1016/j.solener.2004.03.031

Fujishima, A.; Rao, T.N.; Tryk, D.A. (2000) Titanium dioxide photocatalysis, J. Photoch. Photobio C, [1], 1-21. https://doi.org/10.1016/S1389-5567(00)00002-2

Schodek, D. L.; Ferreira, P.; Ashby, M. F. (2009) Nanomaterials, nanotechnologies and design: an introduction for engineers and architects. Butterworth-Heinemann. ISBN: 978-0-7506-8149-0

Wang Y.; Herron, N. (1991) Nanometer-sized semiconductor clusters: Materials synthesis, quantum size effects, and photophysical properties. J. Phys. Chem., [95], 525-532. https://doi.org/10.1021/j100155a009

Beydoun, d.; Amal, R.; Lowand, G.; McEvoy, S. (1999) Role of nanoparticles in photocatalysis, J. Nanopart. Res., [1], 439-458. http://dx.doi.org/10.1023/A:1010044830871. https://doi.org/10.1023/A:1010044830871

Bengtsson, N.; Castellote, M. (2014) Heterogeneous photocatalysis on construction materials: effect of catalyst properties on the efficiency for degrading NOx and self cleaning, Mater. Construcc., 64 [314], e013. https://doi.org/10.3989/mc.2014.06713

Munafò, P.; Goffredo, G. B.; Quagliarini, E. (2015) TiO2- based nanocoatings for preserving architectural stone surfaces: An overview. Constr. Build. Mater., [84], 201-218. https://doi.org/10.1016/j.conbuildmat.2015.02.083

Colangiuli, D.; Calia, A.; Bianco, N. (2015) Novel multifunctional coatings with photocatalytic and hydrophobic properties for the preservation of the stone building heritage. Constr. Build. Mater., [93], 189-196. https://doi.org/10.1016/j.conbuildmat.2015.05.100

Guan, K. (2005) Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO2/SiO2 films. Surf. Coat. Tech., 191 [2], 155-160. https://doi.org/10.1016/j.surfcoat.2004.02.022

Calia, A.; Matera, L.; Lettieri, M.T. (2012) Compact limestones as historical building material: properties of the Trani stone (Apulia, southern Italy) and preliminary study for self cleaning treatments, 12th International Congress on the Deterioration and Conservation of Stone Columbia University, New York.

Goffredo, G.B.; Quagliarini, E.; Bondioli, F.; Munafo, E. (2014) TiO2 nanocoatings for architectural heritage: Self-cleaning treatments on historical stone surfaces. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems.

Licciulli, A.; Calia A.; Lettieri, M.; Diso, D.; Masieri, M.; Franza, S. (2011) Photocatalytic TiO2 coatings on limestone. J. Sol-Gel Sci. Technol.; [60], 437-44. https://doi.org/10.1007/s10971-011-2574-9

Pinho, L.; Elhaddad, F.; Facio, D. S.; Mosquera, M. J. (2013) A novel TiO2-SiO2 nanocomposite converts a very friable stone into a self-cleaning building material. Appl. Surf. Sci., [275], 389-396. https://doi.org/10.1016/j.apsusc.2012.10.142

Bergamonti, L.; Alfieri, I.; Lorenzi, A.; Montenero, A.; Predieri, G.; Barone, G.; Lottici, P. P. (2013) Nanocrystalline TiO2 by sol-gel: Characterisation and photocatalytic activity on Modica and Comiso stones. Appl. Surf. Sci., [282], 165-173. https://doi.org/10.1016/j.apsusc.2013.05.095

Luvidi, L.; Laguzzi, G.; Gallese, F.; Mecchi, A.M.; Sidoti, G. (2010) Application of TiO2 based coatings on stone surfaces of interest in the field of cultural heritage. In: Ferrari A, editor. 4th International Congress on Science and technology for the safeguard of Cultural heritage in the Mediterranean Basin, vol. 2. Napoli: Grafica Elettronica; p. 495-500.

Munafò, P.; Quagliarini, E.; Goffredo, G. B.; Bondioli, F.; Licciulli, A. (2014) Durability of nano engineered TiO2 self-cleaning treatments on limestone. Constr. Build. Mater., [65], 218-231. https://doi.org/10.1016/j.conbuildmat.2014.04.112

Pinho, L.; Mosquera, M. J. (2011) Titania-silica nanocomposite photocatalysts with application in stone self-cleaning. J. Phys. Chem. C, 115 [46], 22851-22862. https://doi.org/10.1021/jp2074623

Graziani, L.; Quagliarini, E.; Bondioli, F.; D'Orazio, M. (2014) Durability of self-cleaning TiO2 coatings on fired clay brick façades: Effects of UV exposure and wet & dry cycles. Build. Environ., [71], 193-203. https://doi.org/10.1016/j.buildenv.2013.10.005

Diamanti, M. V.; Ormellese, M.; Pedeferri, M. (2008) Characterization of photocatalytic and superhydrophilic properties of mortars containing titanium dioxide. Cement Concrete Res., 38, [11], 1349-1353. https://doi.org/10.1016/j.cemconres.2008.07.003

Lucas, S. S., Ferreira, V. M.; Barroso de Aguiar, J.L. (2013) Incorporation of titanium dioxide nanoparticles in mortars-Influence of microstructure in the hardened state properties and photocatalytic activity. Cement Concrete Res., [43], 112-120. https://doi.org/10.1016/j.cemconres.2012.09.007

La Russa, M.F.; Macchia, A.; Ruffolo, S.A.; De Leo, F.; Barberio, M.; Barone, P.; Crisci, G.M.; Urzi, C. (2014) Testing the antibacterial activity of doped TiO2 for preventing biodeterioration of cultural heritage building materials. Int. Biodeter. Biodegr., [96], 87-96. https://doi.org/10.1016/j.ibiod.2014.10.002

Quaresima, R.; Baccante, A.; Volpe, R.; Corain, B. (1997) Realization and Possibility of Polymeric Mataloorganic Matrixes with Biocides Activity. In New Concepts, Technologies and Materials for the Conservation and Management of Historic Cities, Sites and Complexes, Volume 3, ed. A. Moropoulou, F. Zezza, E. Kollias, and I. Papachristodoulou, pp. 323-335. Athens.

Pinna, D.; Salvadori, B.; Galeotti, M. (2012) Monitoring the performance of innovative and traditional biocides mixed with consolidants and water-repellents for the prevention of biological growth on stone. Sci. Total Environ., [15], 132-141. https://doi.org/10.1016/j.scitotenv.2012.02.012 PMid:22401787

Ditaranto, N.; Loperfido, S.; Van der Werf, I.; Mangone, A.; Cioffi, N.; Sabbatini, L. (2011) Synthesis and analytical characterisation of copper-based nanocoatings for bioactive stone artworks treatment. Anal. Bioanal. Chem., [399], 473-481. https://doi.org/10.1007/s00216-010-4301-8 PMid:20972773

Pinna, D.; Salvadori, B.; Galeotti, M. (2012) Monitoring the performance of innovative and traditional biocides mixed with consolidants and water-repellents for the prevention of biological growth on stone. Sci. Total Environ., [423], 132-141. https://doi.org/10.1016/j.scitotenv.2012.02.012 PMid:22401787

Bellissima, F.; Bonini, M.; Giorgi, R.; Baglioni, P.; Barresi, P.; Mastromei, G.; Perito, B. (2014) Antibacterial activity of silver nanoparticles grafted on stone surface. Environ. Sci. Pollut. R., [21], 13278-13286. https://doi.org/10.1007/s11356-013-2215-7 PMid:24151026

Aflori, M.; Simionescu, B.; Bordiani, I.; Olaru, M. (2013) Silesquioxane-based hybrid nanocomposite with methacrylate units containing titania and/or silver nanoparticles as antibacterial/antifungal coatings for monumental stones. Mat. Sci. Eng. B., 178 [19], 1339-1346. https://doi.org/10.1016/j.mseb.2013.04.004

Carrillo-González, R.; Martínez-Gómez, M.A.; González-Chávez, M.D.; Mendoza Hernández, J.C. (2016) Inhibition of microorganisms involved in deterioration of an archaeological site by silver nanoparticles produced by a green synthesis method. Sci. Total Environ., [16], 30320-30325. https://doi.org/10.1016/j.scitotenv.2016.02.110

Janaki, A.C.; Sailatha, E.; Gunasekaran, S. (2015) Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles. Spectrochim. Acta Mol. Biomol. Spectrosc., [144], 17-22. https://doi.org/10.1016/j.saa.2015.02.041 PMid:25748589

Van der Weerf, I.D.; Ditaranto, N.; Picca, R.A.; Sportelli, M.C.; Sabbatini, L. (2015) Development of a novel conservation treatment of stone monuments with bioactive nanocomposites. Heritage Science, 3, [29].

Ditaranto, N.; Van der Werf, I.D.; Picca, R.A.; Sportelli, M.C.; Giannossa, L.C.; Bonerba, E.; Tantillo, G.; Sabbatini, L. (2015) Characterization and behaviour of ZnO-based nanocomposites designed for the control of biodeterioration of patrimonial stoneworks. New J. Chem., [39], 6836-6843. https://doi.org/10.1039/C5NJ00527B

Gómez-Ortíz, N.; De la Rosa-García, S.; González-Gómez, W.; Soria-Castro, M.; Quintana, P.; Oskam, G.; Ortega- Morales, B. (2013) Antifungal coatings base don Ca(OH)2 mixed with ZnO-TiO2 nanomaterials for protection of limestone monuments. ACS Appl. Mater. Interfaces., 13 [5], 1556-1565. https://doi.org/10.1021/am302783h PMid:23347459

Gómez-Ortiz, N.M.; González-Gómez, W.S.; De la Rosa-García, S.C.; Oskam, G.; Quintana, P.; Soria-Castro, M.; Gómez-Cornelio, S.; Ortega-Morales, B.O. (2014) Antifungal activity of Ca[Zn(OH)3]2·2H2O coatings preservation of limestone monuments: An in vitro study. Int. Biodeterior. Biodegradation., [91], 1-8. https://doi.org/10.1016/j.ibiod.2014.02.005

Ruffolo, S.A.; La Russa, M.F.; Malagodi, M.; Oliviero, Rossi, C.; Palermo, A.M.; Crisci, G.M. (2010) ZnO and ZnTiO3 nanopowders for antimicrobial stone coating. Appl. Phys. A: Mater., [100], 829-834. https://doi.org/10.1007/s00339-010-5658-4

Ruffolo, S.A.; Macchia, A.; La Russa, M.F.; Mazza, L.; Urzi, C.; De Leo, F.; Barberio, M.; Crisci, G.M. (2013) Marine antifouling for underwater archaeological sites: TiO2 and Ag-Doped TiO2. Int. J. Photoenergy, ID 251647, 6p.

La Russa, M.F.; Macchia, A.; Ruffolo, S.A.; De Leo, F.; Barberio, M.; Barone, P.; Crisci, G.M.; Urzi, C. (2014) Testing the antibacterial activity of doped TiO2 for preventing biodeterioration of cultural heritage building materials. Int. Biodeter. Biodegr., [96], 87-96. https://doi.org/10.1016/j.ibiod.2014.10.002




Copyright (c) 2017 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es