Materiales de Construcción, Vol 68, No 330 (2018)

Effect of hybrid fibers, calcium carbonate whisker and coarse sand on mechanical properties of cement-based composites


https://doi.org/10.3989/mc.2018.01717

M. Cao
Department of Civil Engineering, Dalian University of Technology, China
orcid http://orcid.org/0000-0002-7917-4710

L. Li
Department of Civil Engineering, Dalian University of Technology, China
orcid http://orcid.org/0000-0003-3966-6363

M. Khan
Department of Civil Engineering, Dalian University of Technology, China
orcid http://orcid.org/0000-0003-2898-1827

Abstract


Nowadays researchers are developing a new hybrid fiber reinforced cement-based composites (HyFRCC). The new HyFRCC can restrain micro-cracking, improves compressive and flexural performance of beams by addition of calcium carbonate (CaCO3) whisker, polyvinyl alcohol (PVA) fiber and steel fiber. In this work, a mix optimization procedure is shown for multi-scale HyFRCC, with steel, PVA fiber and CaCO3 whisker. The new HyFRCC is explored with addition of coarse sand to further improve its mechanical properties. Additionally, the flexural performance of beam and slabs has been investigated to optimize sand gradation and fiber combination in new HyFRCC. The compressive strength, flexural strength, flexural behavior, flexural toughness, equivalent flexural strength and deflection-hardening behavior of beams and slabs are improved with optimized content of sand gradation, fibers and CaCO3 whisker. The HyFRCC slab with 1.5% steel fiber, 0.4% PVA fiber, 1% CaCO3 whisker and optimized coarse sand showed overall best properties.

Keywords


Composite; Microcracking; Calcium carbonate; Compressive strength; Flexural strength

Full Text:


HTML PDF XML

References


Banthia, N.; Soleimani, S.M. (2005) Flexural response of hybrid fiber-reinforced cementitious composites. ACI Mater. J. 102[6], 382–389.

Nguyen, V. P.; Stroeven, M.; Sluys, L. J. (2012) Multiscale failure modeling of concrete: micromechanical modeling, discontinuous homogenization and parallel computations. Comp. Meth. Appl. Mech. Eng.201, 139–156. https://doi.org/10.1016/j.cma.2011.09.014

Bentz, D. P. (2000) Influence of silica fume on diffusivity in cement-based materials: II. Multi-scale modeling of concrete diffusivity. Cem. Concr. Res. 30[7], 1121–1129. https://doi.org/10.1016/S0008-8846(00)00263-5

Kang, S. T.; Choi, J. I.; Koh, K. T.; Lee, K. S.; Lee, B. Y. (2016) Hybrid effects of steel fiber and microfiber on the tensile behavior of ultra-high performance concrete. Comp. Struct. 145, 37–42. https://doi.org/10.1016/j.compstruct.2016.02.075

Cao, M.; Zhang, C.; Li, Y.; Wei, J. (2014) Using Calcium Carbonate Whisker in Hybrid Fiber-Reinforced Cementitious Composites. ASCE J. Mater. Civ. Eng. 27[4], 04014139. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001041

Kwon, S.; Nishiwaki, T.; Kikuta, T.; Mihashi, H. (2014) Development of Ultra-High-Performance Hybrid Fiber-Reinforced Cement-Based Composites. ACI Mater. J. 111[3]. https://doi.org/10.14359/51686890

Ali, M. (2016). Use of coconut fibre reinforced concrete and coconut-fibre ropes for seismic-resistant construction. Mater. Construcc. 66 [321], e073. https://doi.org/10.3989/mc.2016.01015

Khan, M.; Ali, M. (2016). Use of glass and nylon fibers in concrete for controlling early age micro cracking in bridge decks. Constr. Build. Mater. 125, 800–808. https://doi.org/10.1016/j.conbuildmat.2016.08.111

Ahmed, S. F. U.; Mihashi, H. (2011) Strain hardening behavior of lightweight hybrid polyvinyl alcohol (PVA) fiber reinforced cement composites. Mater. struct. 44[6], 1179–1191. https://doi.org/10.1617/s11527-010-9691-8

Kim, D. J.; Park, S. H.; Ryu, G. S.; Koh, K. T. (2011) Comparative flexural behavior of hybrid ultra high performance fiber reinforced concrete with different macro fibers. Constr. Build. Mater. 25[11], 4144–4155. https://doi.org/10.1016/j.conbuildmat.2011.04.051

Parant, E.; Rossi, P.; Boulay, C. (2007) Fatigue behavior of a multi-scale cement composite. Cem. Concr. Res. 37[2], 264–269. https://doi.org/10.1016/j.cemconres.2006.04.006

Yoo, D. Y.; Banthia, N. (2016) Mechanical properties of ultra-high-performance fiber-reinforced concrete: A review. Cem. Concr. Comp. 73, 267–280. https://doi.org/10.1016/j.cemconcomp.2016.08.001

Soe, K. T.; Zhang, Y. X.; Zhang, L. C. (2013) Material properties of a new hybrid fibre-reinforced engineered cementitious composite. Constr. Build. Mater. 43, 399–407. https://doi.org/10.1016/j.conbuildmat.2013.02.021

Blunt, J. D.; Ostertag, C. P. (2009) Deflection hardening and workability of hybrid fiber composites. ACI Mater. J. 106[3], 265–272.

Cao, M.; Zhang, C.; Lv, H. (2014) Mechanical response and shrinkage performance of cementitious composites with a new fiber hybridization. Constr. Build. Mater. 57, 45–52. https://doi.org/10.1016/j.conbuildmat.2014.01.088

Banyhussan, Q. S.; Yıldırım, G.; Bayraktar, E.; Demirhan, S.; S¸ahmaran, M. (2016) Deflection-hardening hybrid fiber reinforced concrete: The effect of aggregate content. Constr. Build. Mater. 125, 41–52. https://doi.org/10.1016/j.conbuildmat.2016.08.020

Sahmaran, M.; Lachemi, M.; Hossain, K. M.; Ranade, R.; Li, V. C. (2009) Influence of aggregate type and size on ductility and mechanical properties of engineered cementitious composites. ACI Mater. J. 106[3], 308–316.

Lawler, J. S.; Zampini, D.; Shah, S. P. (2005) Microfiber and macrofiber hybrid fiber-reinforced concrete. ASCE J. Mater. Civ. Eng. 17[5], 595–604. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:5(595)

S¸anal, I˙.; Özyurt, N.; Hosseini, A. (2016) Characterization of hardened state behavior of self compacting fiber-reinforced cementitious composites (SC-FRCC's) with different beam sizes and fiber types. Comp. Part B: Eng. 105, 30–45. https://doi.org/10.1016/j.compositesb.2016.06.075

Wille, K.; Parra-Montesinos, G. J. (2012) Effect of Beam Size, Casting Method, and Support Conditions on Flexural Behavior of Ultra-High-Performance Fiber-Reinforced Concrete. ACI Mater. J. 109[3], 379–388.

Yoo, D. Y.; Banthia, N.; Kang, S. T.; Yoon, Y. S. (2016) Size effect in ultra-high-performance concrete beams. Eng. Fract. Mech. 157, 86–106. https://doi.org/10.1016/j.engfracmech.2016.02.009

Nguyen, D. L.; Kim, D. J.; Ryu, G. S.; Koh, K. T. (2013) Size effect on flexural behavior of ultra-high-performance hybrid fiber-reinforced concrete. Comp. Part B: Eng. 45[1], 1104–1116. https://doi.org/10.1016/j.compositesb.2012.07.012

Lepech, M. D.; Li, V. C. (2009) Application of ECC for bridge deck link slabs. Mater. struct. 42[9], 1185. https://doi.org/10.1617/s11527-009-9544-5

Kunieda, M.; Rokugo, K. (2006) Recent progress on HPFRCC in Japan. J. Adv. Concr. Technol. 4[1], 19–33. https://doi.org/10.3151/jact.4.19

Maalej, M.; Quek, S. T.; Ahmed, S. F. U.; Zhang, J.; Lin, V. W. J.; Leong, K. S. (2012) Review of potential structural applications of hybrid fiber Engineered Cementitious Composites. Constr. Build. Mater. 36, 216–227. https://doi.org/10.1016/j.conbuildmat.2012.04.010

Banthia, N.; Majdzadeh, F.; Wu, J.; Bindiganavile, V. (2014) Fiber synergy in Hybrid Fiber Reinforced Concrete (HyFRC) in flexure and direct shear. Cem. Concr. Comp. 48, 91–97. https://doi.org/10.1016/j.cemconcomp.2013.10.018

S¸ahmaran, M. S.; Yücel, H. E.; Demirhan, S.; C Li, V. (2012) Combined Effect of Aggregate and Mineral Admixtures on Tensile Ductility of Engineered Cementitious Composites. ACI Mater. J. 109[6], 627–637.

Cao, M.; Zhang, C.; Wei, J. (2013) Microscopic reinforcement for cement based composite materials. Constr. Build. Mater. 40, 14–25. https://doi.org/10.1016/j.conbuildmat.2012.10.012

Shaikh, F. U. A. (2013) Deflection hardening behaviour of short fibre reinforced fly ash based geopolymer composites. Mater. Design 50, 674–682. https://doi.org/10.1016/j.matdes.2013.03.063

Li, V. C. (2012) Tailoring ECC for special attributes: A review. Int. J. Concr. Struct. Mater. 6[3], 135–144. https://doi.org/10.1007/s40069-012-0018-8

Yao, W.; Li, J.; Wu, K. (2003) Mechanical properties of hybrid fiber-reinforced concrete at low fiber volume fraction. Cem. Concr. Res. 33[1], 27–30. https://doi.org/10.1016/S0008-8846(02)00913-4

Khan, M. I.; Fares, G.; Mourad, S.; Abbass, W. (2016) Optimized Fresh and Hardened Properties of Strain-Hardening Cementitious Composites: Effect of Sand Size and Workability. ASCE J. Mater. Civ. Eng. 28[12], 04016152. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001665




Copyright (c) 2018 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es