Materiales de Construcción, Vol 68, No 332 (2018)

Consolidation with ethyl silicate: how the amount of product alters the physical properties of the bricks and affects their durability


https://doi.org/10.3989/mc.2018.12817

G. Cultrone
Departamento de Mineralogía y Petrología, Facultad de Ciencias, Universidad de Granada, Spain
orcid http://orcid.org/0000-0001-9503-3312

V. Sánchez-Ibáñez
Departamento de Mineralogía y Petrología, Facultad de Ciencias, Universidad de Granada, Spain
orcid http://orcid.org/0000-0003-2047-3393

Abstract


We evaluated the consolidating capacity of ethyl silicate in three types of bricks fired at 800, 950 and 1100 °C. We chose two concentrations of product, at 25% and 50%, diluting the product in white spirit to estimate whether greater dilution enables the product to penetrate deeper into the bricks, or whether a higher concentration leads to better consolidation of bricks. The application of ethyl silicate caused bricks porosity to decline and their compactness to increase. These changes were more accentuated as the concentration of the product increased. The pore size distribution not changed substantially except that there were fewer of the smallest pores. The color and the lightness of the pieces changed after application of the consolidant, albeit slightly. The durability of bricks improved as manifested by the results of the salt crystallization test. In general, the longest-lasting pieces were those treated with 25% ethyl silicate.

Keywords


Brick; Weathering; Physical properties; Durability

Full Text:


HTML PDF XML

References


Winkler, E. M. (1973) Stone: properties, durability in man's environment. Springer, New York. https://doi.org/10.1007/978-3-7091-4120-5

Alves, C.; Sanjurjo Sánchez, J. (2015) Maintenance and Conservation of Materials in the Built Environment. In: Pollutants in Buildings, Water and Living Organisms (Lichtfouse E., Schwarzbauer J., Robert D. eds.). Springer, Cham, pp. 1–50. https://doi.org/10.1007/978-3-319-19276-5_1

Lazzarini, L.; Laurenzi Tabasso, M. (1986) Il restauro della pietra. CEDAM, Padova.

Snethlage, R. (2014) Stone Conservation. In: Stone in architecture. Properties, duarability (Siegesmund, S. and Snethlage, R. eds.). Springer, Berlin, pp. 415–550. https://doi.org/10.1007/978-3-642-45155-3_7

Sierra Fernandez, A.; Gomez Villalba, L. S.; Rabanal, E. M. E.; Fort, R. (2017) New nanomaterials for application and restoration of stony materials: a review. Mater. Construcc. 67, e107. https://doi.org/10.3989/mc.2017.07616

Esbert, R. M.; Grossi, C.; Marcos, R. M. (1987) Estudios experimentales sobre la consolidación y protección de los materiales calcáreos de la Catedral de Oviedo. 1ª parte. Mater. Construcc. 37, 17–25. https://doi.org/10.3989/mc.1987.v37.i206.867

Esbert, R. M.; Díaz Pache, F. (1993) Influencia de las características petrofísicas en la penetración de consolidantes en rocas monumentales porosas. Mater. Construcc. 43, 25–36. https://doi.org/10.3989/mc.1993.v43.i230.681

Cultrone, G.; Madkour, F. (2013) Evaluation of the effectiveness of treatment products in improving the quality of ceramics used in new and historical buildings. J. Cult. Herit. 14, 304–310. https://doi.org/10.1016/j.culher.2012.08.001

Marques, M. L.; Chastre, C. (2014) Effect of consolidation treatments on mechanical behaviour of sandstone. Constr. Build. Mater. 70, 473–482. https://doi.org/10.1016/j.conbuildmat.2014.08.005

Cnudde, V.; Dierick, M.; Masschaele, B.; Jacobs P. J. (2006) A high resolution view at water repellents and consolidants: critical review and recent developments. In: fracture and failure of natural building stones (Kourkoulis, S. K. ed.), Springer, Dordrecht, pp. 519–540. https://doi.org/10.1007/978-1-4020-5077-0_32

Warren, J. (1999) Conservation of brick. Butterworth Heinemann, Oxford, UK.

Manning, D. A. C. (1995) Introduction to industrial minerals. Chapman & Hall, London, UK. https://doi.org/10.1007/978-94-011-1242-0

Cultrone, G.; Sebastián, E.; Elert, K.; Torre, M. J. de la; Cazalla, O.; Rodríguez Navarro, C. (2004) Influence of mineralogy and firing temperature on porosity of bricks. J. Eur. Ceram. Soc. 24, 547–564. https://doi.org/10.1016/S0955-2219(03)00249-8

Mu-oz Velasco, P.; Morales Ortíz, M.P.; Mendívil Giró, M.A.; Mu-oz Velasco, L. (2014) Fired clay bricks manufactured by adding wastes as sustainable construction material. A review. Constr. Build. Mater. 63, 97–107. https://doi.org/10.1016/j.conbuildmat.2014.03.045

Cultrone, G.; Rodriguez Navarro, C.; Sebastián, E.; Cazalla, O.; Torre, M. J. de la (2001) Carbonate and silicate phase reactions during ceramic firing. Eur. J. Mineral. 13, 621–634. https://doi.org/10.1127/0935-1221/2001/0013-0621

Grapes, R. (2006) Pyrometamorphism. Springer, Berlin, Germany. PMCid:PMC1456285

Liu, R.; Han, X.; Huang, X.; Li, W.; Luo, H. (2013) Preparation of three component TEOS-based composites for stone conservation by sol-gel process. J Sol-Gel Sci. Technol. 68, 19–30. https://doi.org/10.1007/s10971-013-3129-z

Villegas Sánchez, R.; Baglioni, R.; Same-o Puerto, M. (2003) Tipología de materiales para tratamiento. In: Cuadernos Técnicos vol. 8: Metodología de diagnóstico y evaluación de tratamientos para la conservación de los edificios históricos (Villegas Sánchez R. y Sebastián Pardo E., eds.), Comares, Granada, Spain, pp. 168–193.

Scherer, G. W.; Wheeler, G. S. (2009) Silicate consolidants for stone. Key Eng. Mater. 391, 1–25. https://doi.org/10.4028/www.scientific.net/KEM.391.1

Franzoni, E.; Graziani, G.; Sassoni, E. (2015) TEOSbased treatments for stone consolidation: acceleration of hydrolysis-condensation reactions by poulticing. J. Sol- Gel Sci. Technol. 74, 398–405. https://doi.org/10.1007/s10971-014-3610-3

Franzoni, E.; Pigino B.; Leemann, A.; Lura P. (2014) Use of TEOS for fired-clay bricks consolidation. Mater. Struct. 47, 1175–1184. https://doi.org/10.1617/s11527-013-0120-7

Franzoni, E.; Graziani, G.; Sassoni, E.; Bacilieri, G.; Griffa, M.; Lura, P. (2015) Solvent-based ethyl silicate for stone consolidation: influence of the application technique on penetration deep, efficacy and pore occlusion. Mater. Struct. 48, 3503–3515. https://doi.org/10.1617/s11527-014-0417-1

Torraca, G. (2009) Lectures on materials science for architectural conservation. The Getty Conservation Institute, Los Angeles, USA.

Elert, K.; Sebastián Pardo, E.; Rodriguez Navarro, C. (2015) Alkaline activation as an alternative method for the consolidation of earthen architecture. J. Cult. Herit. 16, 461–469. https://doi.org/10.1016/j.culher.2014.09.012

Bermúdez Sánchez, C.; Rueda Quero, L.; Cultrone, G. (2012) Caracterización de los yacimientos de arcilla en la provincial de Granada aplicada al conocimiento de los bienes de interés histórico-artístico. Proceedings of the I International Congress "El Patrimonio Natural como Motor de Desarrollo: Investigación e Innovación" (Peinado Herreros M. A. ed.), 728–740.

De Rosa, B.; Cultrone, G. (2014) Assessment of two clayey materials from northwest Sardinia (Alghero district, Italy) with a view to their extraction and use in traditional brick production. Appl. Clay Sci. 88–89, 100–110. https://doi.org/10.1016/j.clay.2013.11.030

Martin, J. D. (2016) XPowder, XPowder12, XPowderXTM. A software package for powder X-ray diffraction analysis, Lgl. Dp. GR-780–2016.

ASTM D2845. (2005) Standard test method for laboratory determination of pulse velocities and ultrasonic elastic constant of rock, USA.

Guydader, J.; Denis, A. (1986) Propagation des ondes dans les roches anisotropies sous contrainte évaluation de la qualité des schistes ardoisers. Bull. Eng. Geol. 33 49–55. https://doi.org/10.1007/BF02594705

EN 15886. (2011) Conservation of cultural property. Test methods. Colour measurement of surfaces, AENOR, Madrid.

EN 12370. (2001) Metodi di prova per pietre naturali. Determinazione della resistenza alla cristallizzazione dei sali. CNR-ICR, Rome, Italy.

Espinosa Marzal, R.M.; Hamilton, A.; McNall, M.; Whitaker, K.; Scherer, G.W. (2011) The chemomehanics of crystallization during rewetting of limestone impregnated with sodium sulfate. J. Mater. Res. 26, 1472–1481. https://doi.org/10.1557/jmr.2011.137

Martinez, P.; Soto, M.; Zunino, F.; Stuckrath, C.; Lopez, M. (2016) Effectiveness of tetra-ethyl-ortho-silicate (TEOS) consolidation of fired-clay bricks manufactured with different calcination temperatures. Constr. Build. Mater. 106, 209–217. https://doi.org/10.1016/j.conbuildmat.2015.12.116

Kingery, W. D. (1960) Introduction to ceramics. John Wiley & Sons, Inc., New York.

Ediz, N.; Bentli, I.; Tatar, I. (2010) Improvement in filtration characteristics of diatomite by calcination. Int. J. Miner. Process. 94, 129–134. https://doi.org/10.1016/j.minpro.2010.02.004

Ferraz, E.; Coroado, J.; Silva, J.; Gomes, C.; Rocha, F. (2011) Manufacture of ceramic bricks using recycled Brewing spent kieselguhr. Mater. Manuf. Processes 26, 1319–1329. https://doi.org/10.1080/10426914.2011.551908

Ferreira Pinto, A. P.; Delgado Rodrigues, J. (2008) Stone consolidation: the role of treatment procedures. J. Cult. Herit. 9, 38–53. https://doi.org/10.1016/j.culher.2007.06.004

Costa, D.; Leal, A. S.; Mimoso, J. M.; Pereira, S. M. R. (2017) Consolidation treatments applied to ceramic tiles: are they homogeneous? Mater. Construcc. 67, e113. https://doi.org/10.3989/mc.2017.09015

Bourret, J.; Tesser Doyen, N.; Guinebretiere, R.; Joussein, E.; Smith, D.S. (2015) Anisotropy of thermal conductivity and elastic properties of extruded clay-based materials: evolution with thermal treatment. Appl. Clay Sci. 116–117, 150–157. https://doi.org/10.1016/j.clay.2015.08.006

Ferreira Pinto, A. P.; Delgado Rodrigues, J. (2012) Consolidation of carbonate stones: influence of treatment procedures on the strengthening of consolidants. J. Cult. Herit. 13, 154–166. https://doi.org/10.1016/j.culher.2011.07.003

Esbert, R. M.; Ordaz, J.; Alonso, F. J.; Montoto, M. (1997) Manual de diagnosis y tratamiento de materiales pétreos y cerámicos. Col.legi d'Aparelladors i Arquitectes Tècnics de Barcelona.

Rodriguez Navarro, C.; Cultrone, G.; Sanchez Navas, A.; Sebastián , E. (2003) TEM study of mullite growth after muscovite breakdown. Am. Mineral. 88, 713–724. https://doi.org/10.2138/am-2003-5-601

Papargyris, A.D.; Cooke, R.G.; Papargyri, S.A.; Botis, A.I. (2001) The acoustic behavior of bricks in relation to their mechanical behavior. Constr. Build. Mater. 15, 361–369. https://doi.org/10.1016/S0950-0618(01)00007-1

Rye, O.S. (1976) Keeping your temper under control: materials and manufacture of Papuan pottery. Archeol. Phys. Anthropol. Oceania 11, 106–137.

Grossi, C.M.; Brimblecombe, P.; Esbert, R.M.; Alonso, F.J. (2007) Color changes in architectural limestones from pollution and cleaning, Color Res. Appl. 32, 320–331. https://doi.org/10.1002/col.20322

Dohene, E.; Price, C.A. (2010) Stone conservation. An overview of current research. The Getty Conservation Institute, Los Angeles, USA.

Inkpen, R. J.; Petley, D.; Murphy, W. (2004) Durability and rock properties. In: Stone decay. Its causes and controls (Smith B. J. and Turkington A. V. eds.). Donhead Publishing Ltd., Routledge, Abingdon, UK. PMid:15534554




Copyright (c) 2018 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es