Materiales de Construcción, Vol 70, No 339 (2020)

Exploring the potential of cuttlebone waste to produce building lime


https://doi.org/10.3989/mc.2020.15819

E. Ferraz
Techn&Art, Polytechnic Institute of Tomar - Geobiotec, Department of Geosciences, University of Aveiro, Portugal
orcid https://orcid.org/0000-0003-4717-6305

J. A.F. Gamelas
CIEPQPF, Department of Chemical Engineering, University of Coimbra, Portugal
orcid https://orcid.org/0000-0002-1474-767X

J. Coroado
Techn&Art, Polytechnic Institute of Tomar - Geobiotec, Department of Geosciences, University of Aveiro, Portugal
orcid https://orcid.org/0000-0001-6743-9278

C. Monteiro
CaCO3 - Conservação do Património Artístico, Portugal
orcid https://orcid.org/0000-0002-7141-9090

F. Rocha
Geobiotec, Department of Geosciences, University of Aveiro, Portugal
orcid https://orcid.org/0000-0002-3636-3933

Abstract


The goal of this study is to find a practicable way to recycle cuttlebone waste in the production of lime. It was studied the behavior of calcium oxide obtained from the calcination of this waste at 900, 1000 and 1100 ºC and, after wet slaking, the produced lime was characterized. All the results were compared to calcium oxide or to hydrated lime obtained from commercial limestone. According to the slaking results, the waste and the limestone calcined at 1000 ºC achieved the R4 (around 13 min to reach 60 ºC) and R5 (60 ºC in 25 s) reactiv­ity class, respectively. Changing the calcination temperature to 900 or 1100 ºC did not promote an increase in the reactivity of the calcined waste. Although less reactive than the calcined limestone, the calcined cuttlebone can be transformed without significant constraint into building lime, since this construction material fulfills the relevant physic-chemical standard specifications.

Keywords


Lime; Calcium carbonate; Waste treatment; Hydration; Characterization

Full Text:


HTML PDF XML

References


Birchall, J.D.; Thomas, N.L. (1983) On the architec­ture and function of cuttlefish bone. J. Mater. Sci. 18, 2081–2086.

Sherrard, K.M. (2000) Cuttlebone morphology limits habi­tat depth in eleven species of Sepia (Cephalopoda: Sepiidae). Biol. Bull. 198 [3], 404–414.

Zhang, X.; Vecchio, K.S. (2013) Conversion of natural marine skeletons as scaffolds for bone tissue engineering. Front. Mater. Sci. 7, 103–117.

Le Pabic, C.; Rousseau, M.; Bonnaud-Ponticelli, L.; Von Boletzky, S. (2016) Overview of the shell development of the common cuttlefish Sepia officinalis during early-life stages. Vie Milieu - Life Environ. 66 [1], 35–42.

Čadež, V.; Škapin, S.D.; Leonardi, A.; Križaj, I.; Kazazić, S.; Salopek-Sondi, B.; Sondi, I. (2017) Formation and mor­phogenesis of a cuttlebone’s aragonite biomineral struc­tures for the common cuttlefish (Sepia officinalis) on the nanoscale: Revisited. J. Colloid Interface Sci. 508, 95–104.

North, L.; Labonte, D.; Oyen, M.L.; Coleman, M.P.; Caliskan, H.B.; Johnston, R.E. (2017) Interrelated chem­ical-microstructural-nanomechanical variations in the structural units of the cuttlebone of Sepia officinalis. APL Mater. 5, 116103.

Cadman, J.; Zhou, S.; Chen, Y.; Li, Q. (2012) Cuttlebone: Characterisation, Application and Development of Biomimetic Materials. J. Bionic Eng. 9, 367–376.

Sophia, M.; Sakthieswaran, N. (2019) Waste shell powders as valuable bio-filler in gypsum plaster - Efficient waste man­agement technique by effective utilization. J. Cleaner Prod. 220, 74–86.

Poompradub, S.; Ikeda, Y.; Kokubo, Y.; Shiono, T. (2008) Cuttlebone as reinforcing filler for natural rubber. Eur. Polym. J. 44 [12], 4157–4164.

Shang, S.; Chiu, K.-L.; Yuen, M.C.W.; Jiang, S. (2014) The potential of cuttlebone as reinforced filler of polyurethane. Compos. Sci. Technol. 93, 17–22.

Soisuwan, S.; Phommachant, J.; Wisaijorn, W.; Praserthdam, P. (2014) The characteristics of green cal­cium oxide derived from aquatic materials. Procedia Chem. 9, 53–61.

Sankaranarayanan, S.; Jindapon, W.; Ngamcharussrivichai, C. (2017) Valorization of biodiesel plant-derived products via preparation of solketal fatty esters over calcium-rich natural materials derived oxides. J. Taiwan Inst. Chem. Eng. 81, 57–64.

Catarino, M.; Ramos, M.; Dias, A.P.S.; Santos, M.T.; Puna, J.F.; Gomes, J.F. (2017) Calcium Rich Food Wastes Based Catalysts for Biodiesel Production. Waste Biomass Valorization. 8, 1699–1707

Ngamcharussrivichai, C.; Nunthasanti, P.; Tanachai, S.; Bunyakiat, K. (2010) Biodiesel production through transesterification over natural calciums. Fuel Process. Technol. 91 [11], 1409–1415.

Castilho, S.; Kiennemann, A.; Pereira, M.F.C.; Dias, A.P.S. (2013) Sorbents for CO2 capture from biogenesis calcium wastes. Chem. Eng. J. 226, 146–153.

Dogan, E.; Okumus, Z. (2014) Cuttlebone used as a bone xenograft in bone healing. Vet. Med. 59, 254–260.

Periasamy, K.; Mohankumar, G.C. (2016) Sea coral-derived cuttlebone reinforced epoxy composites: Characterization and tensile properties evaluation with mathematical models. J. Compos. Mater. 50 [6], 807–823.

FAO - Global Production Statistics 1950–2017. Retreived from http://www.fao.org/fishery/statistics/global-produc­tion/query/en. Accessed 15 February 2020.

NP EN 459–1 (2015) Building lime. Part 1: Definitions, specifications and conformity criteria. Instituto Português da Qualidade, Caparica (in portuguese).

Ferraz, E.; Gamelas, J.A.F.; Coroado, J.; Monteiro, C.; Rocha, F. (2019) Recycling waste seashells to produce calcitic lime: characterization and wet slaking reactivity. Waste Biomass Valorization. 10, 2397–2414.

Ferraz, E.; Gamelas, J.A.F.; Coroado, J.; Monteiro, C.; Rocha, F. (2018) Eggshell waste to produce building lime: calcium oxide reactivity, industrial, environmental and economic implications. Mater. Struct. 51, 115.

NP EN 459–2 (2011) Building lime. Part 2: Test methods. Instituto Português da Qualidade, Caparica (in portuguese).

Florek, M.; Fornal, E.; Gómez-Romero, P.; Zieba, E.; Paszkowicz, W.; Lekki, J.; Nowak, J.; Kuczumow, A. (2009) Complementary microstructural and chemical analyses of Sepia officinalis endoskeleton. Mat. Sci. Eng., C, 29 [4], 1220–1226.

Urmos, J.; Sharma, S.K.; Mackenzie, F.T. (1991) Characterization of some biogenic carbonates with Raman spectroscopy. Am. Mineral. 76, 641–646.

Bellamy, L.J. (1975) The infrared spectra of complex mol­ecules, 3 ed. Chapman and Hall, London.

Estatística da Pesca 2018 (2019) Instituto Nacional de Estatística, Lisboa (in portuguese).

Balti, R.; Bougatef, A.; Ali, N.E.-H.; Zekri, D.; Barkia, A.; Nasri, M. (2010) Influence of degree of hydrolysis on func­tional properties and angiotensin I-converting enzyme-inhibitory activity of protein hydrolysates from cuttlefish (Sepia officinalis) by-products. J. Sci. Food Agric. 90 [12],




Copyright (c) 2020 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es