Exploring the potential of cuttlebone waste to produce building lime
DOI:
https://doi.org/10.3989/mc.2020.15819Keywords:
Lime, Calcium carbonate, Waste treatment, Hydration, CharacterizationAbstract
The goal of this study is to find a practicable way to recycle cuttlebone waste in the production of lime. It was studied the behavior of calcium oxide obtained from the calcination of this waste at 900, 1000 and 1100 ºC and, after wet slaking, the produced lime was characterized. All the results were compared to calcium oxide or to hydrated lime obtained from commercial limestone. According to the slaking results, the waste and the limestone calcined at 1000 ºC achieved the R4 (around 13 min to reach 60 ºC) and R5 (60 ºC in 25 s) reactivity class, respectively. Changing the calcination temperature to 900 or 1100 ºC did not promote an increase in the reactivity of the calcined waste. Although less reactive than the calcined limestone, the calcined cuttlebone can be transformed without significant constraint into building lime, since this construction material fulfills the relevant physic-chemical standard specifications.
Downloads
References
Birchall, J.D.; Thomas, N.L. (1983) On the architecture and function of cuttlefish bone. J. Mater. Sci. 18, 2081-2086. https://doi.org/10.1007/BF00555001
Sherrard, K.M. (2000) Cuttlebone morphology limits habitat depth in eleven species of Sepia (Cephalopoda: Sepiidae). Biol. Bull. 198 [3], 404-414. https://doi.org/10.2307/1542696 PMid:10897454
Zhang, X.; Vecchio, K.S. (2013) Conversion of natural marine skeletons as scaffolds for bone tissue engineering. Front. Mater. Sci. 7, 103-117. https://doi.org/10.1007/s11706-013-0204-x
Le Pabic, C.; Rousseau, M.; Bonnaud-Ponticelli, L.; Von Boletzky, S. (2016) Overview of the shell development of the common cuttlefish Sepia officinalis during early-life stages. Vie Milieu - Life Environ. 66 [1], 35-42.
Čadež, V.; Škapin, S.D.; Leonardi, A.; Križaj, I.; Kazazić, S.; Salopek-Sondi, B.; Sondi, I. (2017) Formation and morphogenesis of a cuttlebone's aragonite biomineral structures for the common cuttlefish (Sepia officinalis) on the nanoscale: Revisited. J. Colloid Interface Sci. 508, 95-104. https://doi.org/10.1016/j.jcis.2017.08.028 PMid:28822865
North, L.; Labonte, D.; Oyen, M.L.; Coleman, M.P.; Caliskan, H.B.; Johnston, R.E. (2017) Interrelated chemical-microstructural-nanomechanical variations in the structural units of the cuttlebone of Sepia officinalis. APL Mater. 5, 116103. https://doi.org/10.1063/1.4993202
Cadman, J.; Zhou, S.; Chen, Y.; Li, Q. (2012) Cuttlebone: Characterisation, Application and Development of Biomimetic Materials. J. Bionic Eng. 9, 367-376. https://doi.org/10.1016/S1672-6529(11)60132-7
Sophia, M.; Sakthieswaran, N. (2019) Waste shell powders as valuable bio-filler in gypsum plaster - Efficient waste management technique by effective utilization. J. Cleaner Prod. 220, 74-86. https://doi.org/10.1016/j.jclepro.2019.02.119
Poompradub, S.; Ikeda, Y.; Kokubo, Y.; Shiono, T. (2008) Cuttlebone as reinforcing filler for natural rubber. Eur. Polym. J. 44 [12], 4157-4164. https://doi.org/10.1016/j.eurpolymj.2008.09.015
Shang, S.; Chiu, K.-L.; Yuen, M.C.W.; Jiang, S. (2014) The potential of cuttlebone as reinforced filler of polyurethane. Compos. Sci. Technol. 93, 17-22. https://doi.org/10.1016/j.compscitech.2013.12.019
Soisuwan, S.; Phommachant, J.; Wisaijorn, W.; Praserthdam, P. (2014) The characteristics of green calcium oxide derived from aquatic materials. Procedia Chem. 9, 53-61. https://doi.org/10.1016/j.proche.2014.05.007
Sankaranarayanan, S.; Jindapon, W.; Ngamcharussrivichai, C. (2017) Valorization of biodiesel plant-derived products via preparation of solketal fatty esters over calcium-rich natural materials derived oxides. J. Taiwan Inst. Chem. Eng. 81, 57-64. https://doi.org/10.1016/j.jtice.2017.10.007
Catarino, M.; Ramos, M.; Dias, A.P.S.; Santos, M.T.; Puna, J.F.; Gomes, J.F. (2017) Calcium Rich Food Wastes Based Catalysts for Biodiesel Production. Waste Biomass Valorization. 8, 1699-1707 https://doi.org/10.1007/s12649-017-9988-8
Ngamcharussrivichai, C.; Nunthasanti, P.; Tanachai, S.; Bunyakiat, K. (2010) Biodiesel production through transesterification over natural calciums. Fuel Process. Technol. 91 [11], 1409-1415. https://doi.org/10.1016/j.fuproc.2010.05.014
Castilho, S.; Kiennemann, A.; Pereira, M.F.C.; Dias, A.P.S. (2013) Sorbents for CO2 capture from biogenesis calcium wastes. Chem. Eng. J. 226, 146-153. https://doi.org/10.1016/j.cej.2013.04.017
Dogan, E.; Okumus, Z. (2014) Cuttlebone used as a bone xenograft in bone healing. Vet. Med. 59, 254-260. https://doi.org/10.17221/7519-VETMED
Periasamy, K.; Mohankumar, G.C. (2016) Sea coral-derived cuttlebone reinforced epoxy composites: Characterization and tensile properties evaluation with mathematical models. J. Compos. Mater. 50 [6], 807-823. https://doi.org/10.1177/0021998315581512
FAO - Global Production Statistics 1950-2017. Retreived from http://www.fao.org/fishery/statistics/global-production/query/en. Accessed 15 February 2020.
NP EN 459-1 (2015) Building lime. Part 1: Definitions, specifications and conformity criteria. Instituto Português da Qualidade, Caparica (in portuguese).
Ferraz, E.; Gamelas, J.A.F.; Coroado, J.; Monteiro, C.; Rocha, F. (2019) Recycling waste seashells to produce calcitic lime: characterization and wet slaking reactivity. Waste Biomass Valorization. 10, 2397-2414. https://doi.org/10.1007/s12649-018-0232-y
Ferraz, E.; Gamelas, J.A.F.; Coroado, J.; Monteiro, C.; Rocha, F. (2018) Eggshell waste to produce building lime: calcium oxide reactivity, industrial, environmental and economic implications. Mater. Struct. 51, 115. https://doi.org/10.1617/s11527-018-1243-7
NP EN 459-2 (2011) Building lime. Part 2: Test methods. Instituto Português da Qualidade, Caparica (in portuguese).
Florek, M.; Fornal, E.; Gómez-Romero, P.; Zieba, E.; Paszkowicz, W.; Lekki, J.; Nowak, J.; Kuczumow, A. (2009) Complementary microstructural and chemical analyses of Sepia officinalis endoskeleton. Mat. Sci. Eng., C, 29 [4], 1220-1226. https://doi.org/10.1016/j.msec.2008.09.040
Urmos, J.; Sharma, S.K.; Mackenzie, F.T. (1991) Characterization of some biogenic carbonates with Raman spectroscopy. Am. Mineral. 76, 641-646.
Bellamy, L.J. (1975) The infrared spectra of complex molecules, 3 ed. Chapman and Hall, London.
Estatística da Pesca 2018 (2019) Instituto Nacional de Estatística, Lisboa (in portuguese).
Balti, R.; Bougatef, A.; Ali, N.E.-H.; Zekri, D.; Barkia, A.; Nasri, M. (2010) Influence of degree of hydrolysis on functional properties and angiotensin I-converting enzyme-inhibitory activity of protein hydrolysates from cuttlefish (Sepia officinalis) by-products. J. Sci. Food Agric. 90 [12]. https://doi.org/10.1002/jsfa.4045 PMid:20583200
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.