Assessing the uniaxial compressive strength and tangent Young’s modulus of basalt rock using the Leeb rebound hardness test

Authors

DOI:

https://doi.org/10.3989/mc.2020.15119

Keywords:

Ornamental stones, Mechanical properties, Compressive strength, Modulus of elasticity, Petrography

Abstract


Basalt was used as an ornamental stone in any historic and ancient cities in Jordan. Measuring the uniaxial compressive strength (UCS) and the tangent Young’s modulus (Et) in the laboratory requires premium quality specimens with special core dimensions. This research focuses on correlations both UCS and Et with Leeb Rebound Hardness Test (LRH). In the laboratory, UCS, Et, and LRH were performed on 90 core samples extracted from 30 different rock boulders collected from the neighboring area of Umm al-Jimal, a historic city in northeastern Jordan. A strong power correlation with (R2 = 0.888, RMSE = 5.464) was found between non-destructive LRH value and UCS. On the other hand, a moderately strong linear regression with (R2 = 0.792, RMSE = 4.661) was found between Et and LRH. In conclusion, non-destructive LRHs can be used as indictors for evaluating both UCS and Et during the restoration of the historic city Umm al-Jimal and the rehabilitation of other existing structures.

Downloads

Download data is not yet available.

References

Singh, R.; Umrao, R.K.; Singh, T.N. (2014) Stability evaluation of road-cut slopes in the Lesser Himalaya of Uttarakhand, India: conventional and numerical approaches. Bull. Eng. Geol. Environ. 73, 845–857.

Sivakugan, N.; Das, B.M.; Lovisa, J.; Patra, C.R. (2014) Determination of c and φ of rocks from indirect tensile strength and uniaxial compressive tests. Int. J. Geot. Eng. 8 [1], 59–65.

Endait, M.; Juneja, A. (2015) New correlations between uniaxial compressive strength and point load strength of basalt. Int. J. Geot. Eng. 9 [4], 348-353.

Umrao, R.K.; Singh, R.; Singh, T.N. (2015) Stability evaluation of hill cut slopes along national highway-13 near Hospet, Karnataka, India. Georisk. 9 [3], 158–170.

Armaghani, D.J.; Mohamad, E.T.; Momeni, E.; Monjezi, M.; Narayanasamy, M.S. (2016) Prediction of the strength and elasticity modulus of granite through an expert artificial neural network. Arab. J. Geosocial. 9, 48.

Sharma, L.K.; Singh, R.; Umrao, R.K.; Sharma, K.M.; Singh, T.N. (2017) Evaluating the modulus of elasticity of soil using soft computing system. Eng. Comp. 33, 497–507.

ISRM (2007) The complete ISRM suggested methods for rock characterization, testing and monitoring in: Ulusay, R., Hudson, J.A. (eds). Suggested methods prepared by the commission on testing methods. International Society for Rock Mechanics, ISRM Turkish National Group, Ankara, p 628.

ASTM D7012 (2014) Standard Test Methods for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Varying States of Stress and Temperatures, ASTM International, West Conshohocken, PA.

Beiki, M.; Majdim, A.; Givshad, A.D. (2013) Application of genetic programming to predict the uniaxial compressive strength and elastic modulus of carbonate rocks. Int. J. Rock Mech. Mining Sci. 63, 159–169.

Karakuş, A.; Akatay, M. (2013) Determination of basic physical and mechanical properties of basaltic rocks from P-wave velocity. Nondestrcut. Test. Eval. 28, 342–353.

Azadan, P.; Ahangari, K. (2014) Evaluation of the new dynamic needle penetrometer in estimating uniaxial compressive strength of weak rocks. Arab. J. Geosocial 7, 3205–3216.

Fakir, M.; Ferentinou, M.; Misra, S. (2017) An investigation into the rock properties influencing the strength in some granitoid rocks of KwaZulu-Natal, South Africa. Geotech. Geol. Eng. 35, 1119–1140.

Heidari, M.; Khanlari, G.R.; Kaveh, M.T.; Kargarian, S. (2012) Predicting the uniaxial compressive and tensile strengths of gypsum rock by point load testing. Rock. Mech. Rock. Eng. 45, 265–273.

Umrao, R.K.; Sharma, L.K.; Singh, R.; Singh, T.N. (2018) Determination of strength and modulus of elasticity of heterogenous sedimentary rocks: An ANFIS predictive technique. Measur. 126, 194–201.

Yilmaz, I.; Yuksek, G. (2009) Prediction of the strength and elasticity modulus of gypsum using multiple regression, ANN, and ANFIS models. Int. J. Rock Mech. Mining. Sci. 46, 803–810.

Yagi, S. (2011) P-wave velocity test for assessment of geotechnical properties of some rock materials. Bull. Mater. Sci. 34, 947–953.

Monjezi, M.; Khoshalan, H.A.; Razifard, M. (2012) A neuro-genetic network for predicting uniaxial compressive strength of rocks. Geotech. Geol. Eng. 30, 1053–1063.

Yasar, E.; Erdogan, Y. (2004) Estimation of rock physic mechanical properties using hardness methods. J. Eng. Geo. 71, 281–288.

Yurdakul, M.; Ceylan, H.; Akdas, H. (2011) A predictive model for uniaxial compressive strength of carbonate rocks from Schmidt hardness, in: Civil, Constr. Envir. Eng. Conf. Pres. and Proc. paper 7.1.

Singh, T.N.; Kainthola, A.; Venkatesh, A. (2012) Correlation between point load index and uniaxial compressive strength for different rock types. Rock. Mech. Rock. Eng. 45, 259–264.

Singh, R.; Vishal, V.; Singh, T.N.; Ranjith, P.G. (2012) A comparative study of generalized regression neural network approach and adaptive neuro-fuzzy inference systems for prediction of unconfined compressive strength of rocks. Neural. Comput. Appl. 23, 499–506.

Anikoh, G.A.; Adesida, P.A.; Afolabi, O.C. (2015) Investigation of physical and mechanical properties of selected rock types in kogi state using hardness tests. J. Min. Wor. Exp. (MWE). 4, 37–51.

Lai, G.T.; Rafek, A.G.; Serasa, A.S.; Hussin, A.; Ern, L.K. (2016) Use of ultrasonic velocity travel time to estimate uniaxial compressive strength of granite and schist in Malaysia . Sains Malaysiana. 45 [2], 185–1939 .

Singh, R.; Umrao, R.K.; Ahmad, M.; Ansari, M.K.; Sharma, L.K.; Singh, T.N. (2017) Prediction of geo mechanical parameters using soft computing and multiple regression approach. Measurt. 99, 108–119.

Karaman, K.; Kesimal, A. (2015) A comparative study of Schmidt hammer test methods for estimating the uniaxial compressive strength of rocks. Bull. Eng. Geol. Environ. 74, 507–520.

Fereidooni, D. (2016) Determination of the geotechnical characteristics of Hornfelsic rocks with a particular emphasis on the correlation between physical and mechanical properties. Rock. Mech. Rock. Eng. 49, 2595–2608.

Wang, H.; Lin, H.; Cao, P. (2017) Correlation of UCS rating with Schmidt hammer surface hardness for rock mass classification. Rock. Mech. Rock. Eng. 50, 195–203.

Lai, G.T.; Mazlan, N.A.; Nadzir, M.S.M.; Rafek, A.G.; Serasa, A.S.; Hussin, A.; Ern, L.K.; Yeok, F.S. (2017) Uniaxial compressive strength of Antarctic Peninsula rocks: Schmidt hammer rebound test .Sains Malaysiana. 46 [5], 677–684.

Rajabi, A.M.; Hosseini, A.; Alireza Heidari, A. (2017) The new empirical formula to estimate the uniaxial compressive strength of limestone; north of saveh a case study. J. Eng. Geo. 11 [3], 159–180.

Daoud, H.S.; Younis, M.; Alshkane; Rashed, K.A. (2018) Prediction of uniaxial compressive strength and modulus of elasticity for some sedimentary rocks in Kurdistan Region- Iraq using Schmidt hammer. Kirkuk Uni. J. Sci. Stu. (KUJSS). 13 [1], 52–67.

El-Sayed, S.A.S.; Abdulelah, A.B.; Abd El-Hamed, A.E-H. (2018) Geotechnical properties of Precambrian carbonate, Saudi Arabia. Arab. J. Geosocial. 11, 500.

Fereidooni, D.; Khajevand, R. (2018) Determining the geotechnical characteristics of some sedimentary rocks from Iran with an emphasis on the correlations between physical, index and mechanical properties. Geotech. Test. J. 41 [3], 555–573.

Heidari, M.; Mohseni, H.; Jalali, S.H. (2018) Prediction of uniaxial compressive strength of some sedimentary rocks by fuzzy and regression models. Geotech. Geol. Eng. 36, 401–412.

Kong, F.; Shang, J. (2018) A validation study for the estimation of uniaxial compressive strength based on index tests. Rock. Mech. Rock. Eng. 51, 2289–2297.

Sari, M. (2018) Investigating relationships between engineering properties of various rock types. Glob. J. Earth. Sci. Eng. 5, 1–25.

Hack, H.; Hingira, J.; Verwaal, W. (1933) Determination of discontinuity wall strength by Equotip and ball rebound tests. Int. J. Rock. Mech. Mining. Sci. Geo. Mechan. Abstr. 30 [2], 151–155.

Aoki, H.; Matsukura, Y. (2008) Estimating the unconfined compressive strength of intact rocks from Equotip hardness. Bull. Eng. Geol. Environ. 67, 23–29.

Verwaal, W.; Mulder, A. (1993) Estimating rock strength with the Equotip hardness tester. Int. J. Rock. Mech. Mining. Sci. Geo. Mechan. Abstr. 30 [6], 659–662.

Meulenkamp, F.; Álvarez Grima, M. (1999) Application of neural networks for the prediction of the unconfined compressive strength (UCS) from Equotip hardness. Int. J. Rock Mech. Mining. Sci. 36 [1], 29–39.

Okawa, S.; Ohoka, M.; Funato, A. (1999) Application of hardness tester to rock specimens. In: Proceedings of the 29th symposium of rock mechanics. 256–260.

Kawasaki, S.; Yoshida, M.; Tanimoto, C.; Masuya, T. (2000) The development of property evaluation method for rock materials based on the simple rebound hardness test: investigations on the effects of test conditions and fundamental properties. J. Japan. Soci. Eng. Geol. 41 [4], 230–241.

Yılmaz, N.G. (2013) The influence of testing procedures on uniaxial compressive strength prediction of carbonate rocks from Equotip hardness tester (EHT) and proposal of a new testing methodology: hybrid dynamic hardness (HDH). Rock. Mech. Rock. Eng. 46, 95–106.

Lee, J.S.; Smallwood, L.; Morgan, E. (2014) New Application of Rebound Hardness Numbers to Generate Logging of Unconfined Compressive Strength in Laminated Shale Formations. In: 48th US Rock Mechanics/Geo mechanics Symposium. American Rock Mechanics Association.

Asiri, Y.; Corkum, A.; El Naggar, H. (2016) Leeb hardness test for UCS estimation of sandstone. 69th Geo Vancouver Conference, Vancouver, October.

Corkum, A.G.; Asiri, Y.; El Naggar, H.; Kinakin, D. (2018) The Leeb hardness test for rock: an updated methodology and UCS correlation. Rock. Mech. Rock. Eng. 51, 665–675.

Kovler, K.; Wang, F.; Muravin, B. (2018) Testing of concrete by rebound method: Leeb versus Schmidt hammers. Mater. Struct. 51, 138.

Gunez Yilmaz, N.; Goktan, R.M. (2019) Comparison and combination of two NDT methods with implications for compressive strength evaluation of selected masonry and building stones. Bull. Eng. Geol. Environ. 78, 4493–4503.

Yilmaz, N.G.; Göktan, R.M. (2018) Analysis of the Leeb hardness test data obtained by using two different rock core holders. SDU. J. Nat. App. SC.

Celik, S.B.; Çobanoğlu, I. (2019) Comparative investigation of Shore, Schmidt, and Leeb hardness tests in the characterization of rock materials. Environ. Earth. Sci. 78, 554.

Yüksek, S. (2019) Mechanical properties of some building stones from volcanic deposits of mount Erciyes (Turkey). Mater. Construcc. 69 [334], e187.

Desarnaud, J.; Kiriyama, K.; Simsir, B.B.; Wilhelm, K.; Viles, H. (2019) A laboratory study of Equotip surface hardness measurements on a range of sandstones: What influences the values and what do they mean? Earth Surf. Process. Landforms. 44 [7], 1419–1429.

Kawasaki, S.; Tanimoto, C.; Koizumi, K.; Ishikawa, M. (2002) An attempt to estimate mechanical properties of rocks using the Equotip Hard ness tester Jo. Japan. Soci. Eng. Geol. 43, 244–248.

Asiti, Y.; Corkum, A.; El Naggar, H. (2017) Standardized process for field estimation of unconfined compressive strength using Leeb hardness. MASc, Dalhousie University, Halifax. (2017).

El-Hasan, T.; Al-Malabeh, A. (2008) Geochemistry, mineralogy and petrogenesis of El-Lajjoun Pleistocene alkali basalt of central Jordan. Jordan. J. Earth. Envir. Sci. 1, 53–62.

Bany Yaseen, I.A.A.; Abidrabbu, A.Y. (2016) Mineralogy, petrology and geochemistry of the basalt flows at Ash-Shuna Ash-Shamaliyya area, north west Jordan. Earth. Sci. 5 [6], 82–95.

Al Kuisi, M.; Abed, A.M.; Mashal, K.; Saffarini, G.; Saqhour, F. (2015) Hydrogeochemistry of groundwater from karstic limestone aquifer highlighting arsenic contamination: case study from Jordan. Arab. J. Geosci. 8, 9699–9720.

Abu-Mahfouz, I.S.; Al-Malabeh, A.A.; Rababeh, S.M. (2016) Geo-engineering evaluation of Harrat Irbid Basaltic Rocks, Irbid District—North Jordan. Arab. J. Geosci. 9, 412. https://doi.org/10.1007/s12517-016-2428-4.

Smadi, A.K. (2016) Mineralogy, geochemistry and petrogensis of selected basaltic outcrops in central parts of Irbid Governorate, North Jordan. Master of Science in Geology Thesis, Yarmouk University, Irbid Jordan. 137.

Al-Share, R.; Momami, W.; Obeidat, A.; Mansour, N. (2012) Natural stone in Jordan: characteristics and specifications and its importance in interior architecture. Amer. J. Scien. Res. 82, 83–94.

Al-Baijat, H. (2008) The use of basalt aggregates in concrete mixes in Jordan. Jordan. J. Civ. Eng. 2 [1], 63–70.

Ibrahim A.; Faisal, S.; Jamil, N. (2009) Use of basalt in asphalt concrete mixes. Constr. Build. Mater. 23 [1], 498–506.

Tarawaneh, K.; El-Hamed, S.; Abdel Hadi, N.; Rabba, I. (2001) Evaluation of the geological and engineering properties of basalt of northeast Jordan for construction uses (Case Study) Jordan Engineering Association, Amman, Jordan.

Leeb, D. (1979) Dynamic hardness testing of metallic materials. NDT. Int. 12 [6], 274–278,

Viles, H.; Goudie, A.; Grab, S.; Lalley, J. (2011) The use of the Schmidt hammer and Equotip for rock hardness assessment in geomorphology and heritage science: a comparative analysis. Earth. Sur. Proc. Land. 36 [3], 320–333.

Aoki, H.; Matsukura, Y. (2007) A new technique for non-destructive field measurement of rock-surface strength: an application of the Equotip hardness tester to weathering studies. Earth. Sur. Proc. Land. 32 [12], 1759–1769.

ASTM D4543. (2008) Standard Practices for Preparing Rock Core as Cylindrical Test Specimens and Verifying Conformance to Dimensional and Shape Tolerances, ASTM International, West Conshohocken, PA.

ASTM A 966. (2012) Standard Test Method for Leeb Hardness Testing of Steel Products, ASTM International, West Conshohocken, PA.

Daniels, G.; Mcphee, C.; Sorrentino, Y; McCurdy, P. (2012) Non-destructive strength index testing applications for sand failure evaluation. Proceedings of SPE Asia Pacific Oil and Gas Conference and Exhibition, (L), 1–12.

ASTM D7012-10. (2010) Standard Test Method for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Varying States of Stress and Temperatures. ASTM International, West Conshohocken, PA.

Bejarbaneh, B.Y.; Bejarbaneh, E.Y.; Amin, M.F.M.; Fahimifar, A.; Armaghani, D.J.; Majid, M.Z.A. (2018) Intelligent modelling of sandstone deformation behavior using fuzzy logic and neural network systems. Bull. Eng. Geol. Environ. 77, 345–361.

Małkowski, P.; Ostrowski, L.; Brodny, J. (2018) Analysis of Young’s modulus for Carboniferous sedimentary rocks and its relationship with uniaxial compressive strength using different methods of modulus determination. J. Sust. Mining. 17 [3], 145–157.

ASTM E1621-13. (2013). Standard Guide for Elemental Analysis by Wavelength Dispersive X-Ray Fluorescence Spectrometry, ASTM International, West Conshohocken, PA.

Poppe, L.J.; Paskevich, V.F.; Hathaway, J.C.; Blackwood, D.S. (2000) A laboratory manual for X-ray powder doffraction.

Grundmann, G.; Scholz, H. (2015). Preparation methods in mineralogy & geology: the preparation of thin sections, polished sections, acetate foil prints, preparation for elutriation analysis, and staining tests for the optical and electron microscopy. (2015)

ASTM E562-19 (2019) Standard Test Method for Determining Volume Fraction by Systematic Manual Point Count, ASTM International, West Conshohocken, PA.

Tugrul, A.; Gurpinar, O. (1997) The effect of chemical weathering on the engineering properties of eocene basalts in northeastern Turkey. Environ. Eng. Geosci. 2, 225–234.

Le Maitre, R. W. (2002) Igneous rocks: a classification and glossary of terms recommendations of the international union of geological sciences subcommission on the systematics of igneous rocks. Cambridge University Press, (2002).

Irvine, T.N.; Baragar, W.R.A. (1971) A gide to the chemical classification of the common volcanic rocks. Can. J. Earth. Sci. 8 [5], 528–548.

Raymond, L. (2002). Petrology: The Study of Igneous, Sedimentary, and Metamorphic Rocks, 2nd edition, McGraw-Hill Education - Europe. (2002).

ISO 14689-1. (2003) International Standard Organization. Geotechnical Uniaxial compressive investigation and testing. Identification and classification of rock. Part 1: identification and description. Geneva: International organization standardization. 1–16.

Deere, D.U.; Miller, R.P. (1966) Engineering classification and index properties for intact rock. Tech. Report. Air Force Weapons Lab., New Mexico. No. AFWL-TR-65-116.

Shalabi, F.I.; Cording, E.J.; Al-Hattamleh, O.H. (2007) Estimation of rock engineering properties using hardness tests. Eng. Geol. 90 [3–4], 138–147.

Khandelwal, M. (2013) Correlating P-wave velocity with the physico-mechanical properties of different rocks. Pure. Appl. Geophys. 170, 507–514.

Aldeeky, H.; Al Hattamleh, O. (2018) Prediction of engineering properties of basalt rock in Jordan using ultrasonic pulse velocity test. Geotech. Geol. Eng. 36, 3511–3525,

Mahdiyar, A.; Armaghani, D.J.; Marto, A.; Nilashi, M.; Ismail, S. (2018) Rock tensile strength prediction using empirical and soft computing approaches. Bull. Eng. Geol. Environ. 78, 4519–4531.

Rezaei, M. (2018) Indirect measurement of the elastic modulus of intact rocks using the Mamdani fuzzy inference system. Measur. 129, 319–331

Published

2020-11-04

How to Cite

Aldeeky, H., Al Hattamleh, O., & Rababah, S. (2020). Assessing the uniaxial compressive strength and tangent Young’s modulus of basalt rock using the Leeb rebound hardness test. Materiales De Construcción, 70(340), e230. https://doi.org/10.3989/mc.2020.15119

Issue

Section

Research Articles