Lightweight recycled gypsum with residues of expanded polystyrene and cellulose fiber to improve thermal properties of gypsum

Authors

DOI:

https://doi.org/10.3989/mc.2021.07520

Keywords:

Thermal insulation, Cellulose fiber, Composites, Gypsum, Expanded polystyrene

Abstract


In this study, different proportions of gypsum composite reinforced with recycled cellulose fibers and expanded polystyrene were produced to study the properties of thermal conductivity, density, and flexural strength to be used as sealing plates to improve the thermal comfort of buildings. Different gypsum matrix composites were produced with varied proportions of cellulose fiber and expanded polystyrene, to analyze the influence of residues on the properties of the material. The thermal conductivity obtained for composites with greater amounts of expanded polystyrene was 0.18 W/mK, a 48% reduction in relation to plasterboard, improving thermal performance. The flexural strength was also analyzed, which met the minimum strength requirement for use as gypsum composites, however, it is not enough to be used in places that require mechanical resistance, thus it is indicated for sealing plates applications, improving the thermal performance of places where only plasterboard is used.

Downloads

Download data is not yet available.

References

Lamberts, R.; Dutra, L.; Pereira, F. (2014) Eficiência Energética na Arquitetura, Eletrobras Procel, Rio de Janeiro, Brazil (2014).

da Costa, N.; da Costa Jr., N.; Luna, M.; Selig, P.; Rocha, J. (2007) Planning of construction and demolition waste recycling programs in Brazil: A multivariate analysis. Eng. Sanit. Ambient. 12 [4], 446-456. https://doi.org/10.1590/S1413-41522007000400012

Fernandez Machi, C.M.D. (2011) Cenário mundial dos resíduos sólidos e o comportamento corporativo brasileiro frente à logística reversa. Pers. Ges. Conhe. 1 [2], 118-135. https://periodicos.ufpb.br/ojs2/index.php/pgc/article/view/9062/6907.

Sinduscon (2012) Resíduos da Construção Civil e o Estado de São Paulo, Sindicato da Indústria da Construção Civil -Sinduscon, São Paulo. http://arquivos.ambiente.sp.gov.br/municipioverdeazul/2012/08/residuos_construcao_civil_sp.pdf.

Erbs, A.; Nagalli, A.; Mymrine, V.; Carvalho, K. Q. (2015) Determination of physical and mechanical properties of recycled gypsum from the plasterboard sheets. Cerâmica. 61, 482-487. https://doi.org/10.1590/0366-69132015613601930

Erbs, A.; Nagalli, A.; Carvalho, K.Q.; Mymrin, V.; Passig, F.H.; Mazer, W. (2018) Properties of recycled gypsum from gypsum plasterboards and commercial gypsum throughout recycling cycles. J. Clean. Prod. 183, 1314-1322. https://doi.org/10.1016/j.jclepro.2018.02.189

Vasconcelos, G.; Lourenço, P. B.; Camões, A.; Martins, A.; Cunha, S. (2015) Evaluation of the performance of recycled textile fibres in the mechanical behaviour of a gypsum and cork composite material. Cem. Concr. Comp. 58, 29-39. https://doi.org/10.1016/j.cemconcomp.2015.01.001

Macedo Neto, M.C.; Meira de Souza, L.G.; Barbosa Gomes, I.R.; Medeiros, L.C. (2011) Composite gypsum and Styrofoam for the construction of popular houses. Holos. 27 [5], 95-105. https://doi.org/10.15628/holos.2011.658

Serna, Á.; del Río, M.; Palomo, J. G.; González, M. (2012) Improvement of gypsum plaster strain capacity by the addition of rubber particles from recycled tyres. Constr. Build. Mat. 35, 633-641. https://doi.org/10.1016/j.conbuildmat.2012.04.093

Santos Marinho, G.S.; Soares Cunha, P.W.; Gomes, U.U. (2013) Thermophysical properties of a composite with matrix of gypsum and reinforcement of vegetable fiber. Holos 29 [1], 127-138. https://doi.org/10.15628/holos.2013.1203

San-Antonio-González, A.; Del Río Merino, M.; Viñas Arrebola, C.; Villoria-Sáez, P. (2015) Lightweight material made with gypsum and extruded polystyrene waste with enhanced thermal behavior. Constr. Build. Mat. 93, 57-63. https://doi.org/10.1016/j.conbuildmat.2015.05.040

San-Antonio-González, A.; Del Río Merino, M.; Viñas Arrebola, C.; Villoria-Sáez, P. (2016) Lightweight material made with gypsum and EPS waste with enhanced mechanical strength. J. Mater. Civ. Eng. 28 [2], 04015101. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001382

Alameda, L.; Calderón, V.; Junco, C.; Rodríguez, A.; Gadea, J.; Gutiérrez-González, S. (2016) Characterization of gypsum plasterboard with polyurethane foam waste reinforced with polypropylene fibers. Mater. Construcc. 66 [324], e100. https://doi.org/10.3989/mc.2016.06015

Azevedo, C.C.A. (2017) Composite study with gypsum and vermiculite for thermal insulation. Master. Dissertation, Federal University of Rio Grande do Norte, Natal, Brazil. https://repositorio.ufrn.br/jspui/handle/123456789/23390.

Del Rio Merino, M.; Villoria-Sáez, P.; Longobardi, I.; Astorqui, J.S.C.; Porras-Amores, C. (2019) Redesigning lightweight gypsum with mixes of polystyrene waste from construction and demolition waste. J. Clean. Produc. 220, 144-151. https://doi.org/10.1016/j.jclepro.2019.02.132

Kan, A.; Demirboğa, R. (2009) A new technique of processing for waste-expanded polystyrene foams as aggregates. J. Mater. Process. Technol. 209 [6], 2994-3000. https://doi.org/10.1016/j.jmatprotec.2008.07.017

Bardella, P. S.; Camarini, G. (2011) Recycled plaster: physical and mechanical properties. Adv. Mat. Res. 374-377, 1307-1310. https://doi.org/10.4028/www.scientific.net/AMR.374-377.1307

Savi, O. (2012) Produção de placas de forro com a reciclagem do gesso. Master. Dissertation. State University of Maringá, Maringá, São Paulo, Brazil. http://nourau.uem.br/nou-rau/document/?code=vtls000210390.

de Oliveira, K.A.; Barbosa, J.C.; Christoforo, A.L.; Molina, J.C.; Oliveira, C.B.; Bertolini, M.S.; Gava, M.; Ventorim, G. (2019) Sound absorption of recycled gypsum matrix composites with residual cellulosic pulp and expanded polystyrene. BioRes. 14 [2], 4806-4813.

ASTM E1530 (2011) Standard test method for evaluating the resistance to thermal transmission of materials by the guarded heat flow meter technique. ASTM International, West Conshohocken, PA, United States, 2011.

ABNT NBR 14715-2 (2010) Gypsum plasterboard for drywall - Part 2: Test methods. Brazilian Technical Standards Association, Rio de Janeiro, Brazil.

García Santos, A. (2009) PPF-reinforced, ESP-lightened gypsum plaster. Mater. Construcc. 59 [293], 105-124. https://doi.org/10.3989/mc.2009.41107

ABNT NBR 15220-2 (2005) Thermal performance of buildings - Part 2: Methods of calculating thermal transmittance, thermal capacity, thermal delay and solar factor of elements and components of buildings. Brazilian Technical Standards Association, Rio de Janeiro, Brazil.

Gutierrez-Gonzalez, S.; Gadea, J.; Rodríguez, A.; Junco, C.; Calderón, V. (2012) Lightweight plaster materials with enhanced thermal properties made with polyurethane foam wastes. Constr. Build. Mater. 28 [1], 653-658. https://doi.org/10.1016/j.conbuildmat.2011.10.055

Vimmrová, A.; Keppert, M.; Svoboda, L.; Černý, R. (2011) Lightweight gypsum composites: Design strategies for multi-functionality. Cem. Concr. Compos. 33 [1], 84-89. https://doi.org/10.1016/j.cemconcomp.2010.09.011

EN 13279-1 (2008) Gypsum binders and gypsum plasters - Part 1: Definitions and requirements. European Committee for Standardization, Dublin, Ireland.

EN 13279-2 (2014) Gypsum binders and gypsum plasters. Part 2: Test methods. European Committee for Standardization, Dublin, Ireland.

Santa Cruz Astorqui, J.; Del Río Merino, M.; Villoria Sáez, P.; Porras-Amores, C. (2017) Analysis of the relationship between density and mechanical strength of lightened gypsums: Proposal for a coefficient of lightening. Adv. Mater. Sci. Eng. 2017, 7092521. https://doi.org/10.1155/2017/7092521

Published

2021-03-17

How to Cite

de Oliveira, K. ., Oliveira, C. ., & Molina, J. . (2021). Lightweight recycled gypsum with residues of expanded polystyrene and cellulose fiber to improve thermal properties of gypsum. Materiales De Construcción, 71(341), e242. https://doi.org/10.3989/mc.2021.07520

Issue

Section

Research Articles