Materiales de Construcción, Vol 62, No 306 (2012)

Use of the “red gypsum” industrial waste as substitute of natural gypsum for commercial cements manufacturing


https://doi.org/10.3989/mc.2011.63910

M. J. Gázquez
Facultad de Ciencias Experimentales. Universidad de Huelva, Huelva, Spain

J. P. Bolívar
Facultad de Ciencias Experimentales. Universidad de Huelva, Huelva, Spain

F. Vaca
Facultad de Ciencias Experimentales. Universidad de Huelva, Huelva, Spain

R. García-Tenorio
Escuela Técnica Superior de Arquitectura. Universidad de Sevilla, Spain

A. Mena-Nieto
Escuela Técnica Superior de Ingeniería. Universidad de Huelva, Palos de la Frontera, Spain

Abstract


The main objective of this research has been the valorisation of a waste from the TiO2 production process (sulphate method), called red gypsum, in the production of cements. This waste is mainly formed by di-hydrate calcium sulphate and iron hydroxides. To cover this objective it has been necessary to perform the physico-chemical characterisation of the red gypsum as well as the main components in the production of cements and of the new cements generated. Moreover, for the red gypsum, has been analyzed its radioactive content because it is generated in a NORM (Naturally Occurring Radioactive Materials) industry.
Finally, the most important properties of the obtained cements with different proportions of red gypsum in their composition have been studied by comparing them with the standard ones obtained in a Portland cement. Lastly, we have demonstrated that the new cements fulfil all the quality tests imposed by the European legislation.

Keywords


Waste; Valorisation; Titanium dioxide; Red gypsum and NORM industry

Full Text:


PDF

References


(1) Kacimi, L.; Simon-Masseron A.; Ghomari, A.; Derriche, Z.: “Reducton of clinkerizaton temperature by using phosphogypsum”, Journal of Hazardous Material, Vol. B137 (2006), pp. 129- 137. http://dx.doi.org/10.1016/j.jhazmat.2005.12.053 PMid:16533556

(2) Liu Y.; Lin, C.; Wu, Y.: “Characterizaton of red mud derived of from a combined Bayer process and bauxite calcinaton method”, Journal of Hazardous Materials, Vol. 146 (2007), pp. 255-261. http://dx.doi.org/10.1016/j.jhazmat.2006.12.015 PMid:17208370

(3) Deydier, E.; Guilet, R.; Sarda, S.; Sharrock, P.: “Physical and chemical characterizaton of crude meat and bone meal combuston residue: waste or raw material?”. Journal of Hazardous Materials, Vol. B121 (2005), pp. 141-148. http://dx.doi.org/10.1016/j.jhazmat.2005.02.003 PMid:15885415

(4) Vangelatos, I.; Angelopoulos, G.N.; Boufounos, D.: ”Utlizaton of ferroalumina as raw material in the producton of Ordinary Portland Cement”. Journal of Hazardous Materials, Vol. 168 (2009), pp. 473-478. http://dx.doi.org/10.1016/j.jhazmat.2009.02.049 PMid:19286318

(5) Chen, G.; Lee, H.; Young, K.L.;Yue, P.L.; Wong, A.; Tao, T.; Choi, K.K.: “Glass recycling in cement producton: and innovatve approach”. Waste Manage, Vol. 22 (2002), pp. 747-753. http://dx.doi.org/10.1016/S0956-053X(02)00047-8

(6) Tsakiridis, P. E.; Agatzini-Leonardou, S.; Oustadakis, P.: “Red mud additon in the raw meal for the producton of portalnd cement clinker”. Journal of Hazardous Materials, Vol. 116 (2004), pp. 103-110. http://dx.doi.org/10.1016/j.jhazmat.2004.08.002 PMid:15561368

(7) Alp I.; Deveci H.; Yazıcı E.Y.; Türk T.; Süngün Y.H.: “Potental use of pyrite cinders as raw material in cement producton: Results of industrial scale trial operatons”. Journal of Hazardous Materials, Vol. 166 (2009), pp. 144-149. http://dx.doi.org/10.1016/j.jhazmat.2008.10.129 PMid:19100685

(8) López, F.; Cuadros, F.; Segador, C.; Ruiz, A.; García, J.; Mena, A.; Sotullo, S.; Giacola, E.; Ferrer, J.A.; Heras, M.R.: “El edifcio PETER. Un ejemplo de integración de las energías renovables en la edifcación”. DYNA Ingeniería e Industria. Vol. 85-9, (2010), pp. 723-731.

(9) Roji, E.; Cuadrado, J.; Elosegui, U.: “Diseño de bloques de hormigón encaminado a la optimización de su comportamiento técnico”. DYNA Ingeniería e Industria. Vol. 82-3 (2007), pp. 30-34.

(10) McNulty G.S.: ”Production of titanium dioxide”. Proceedings of NORM V International Conference, 19-22 March Seville (2007) Spain.

(11) Gázquez M.J.; Bolívar J.P.; Garcia-Tenorio R.; Vaca, F.: “Physicochemical characterizaton of raw materials and co-products from the ttanium dioxide industry”. Journal of Hazardous Materials, Vol. 166 (2009), pp. 1429-1440. http://dx.doi.org/10.1016/j.jhazmat.2008.12.067 PMid:19167156

(12) Hughes, P.N.; Glendinning, S.; Manning, D.A.C.; Noble, B.C.: “Production of 'green concrete' using red gypsum and waste”. Proceedings of the ICE-Engineering Sustainability (2010), (163) 137-146.

(13) Claisse, P.; Ganjian, E.; Tyrer, M.: “The use of secondary gypsum to make a controlled low strength material”. The Open Construction and Building Technology Journal (2008) (2) 294-305.

(14) Hodson, M.E.; Valsami-Jones, E.; Cotter-Howells, J.; Dubbin, A.J.; Kemp, A.J.; Thornton, I.; Warren, A.: “Effect of bone meal (calcium phosphate) amendments on metal release from contaminated soils - a leaching column study”. Environ. Pollut. 112, 233-243. 2001 http://dx.doi.org/10.1016/S0269-7491(00)00116-0

(15) Fauziah, I.; Zauyah, S.; Jamal, T.: “Characterizaton and land applicaton of red gypsum: a waste product from the ttanium dioxide industry”, The Science of the Total Environment, Vol. 188 (1996), pp. 243-251 http://dx.doi.org/10.1016/0048-9697(96)05179-0

(16) Potgieter, J.H.; Potgieter, S.S.; Mccrindle, R.I. (2004).: “A comparison of the performance of various synthetc gypsums in plant trials during the manufacturing of OPC clinker”. Cement and Concrete Research. Vol. 34, pp. 2245-2250. http://dx.doi.org/10.1016/j.cemconres.2004.04.002

(17) U.S. EPA, Test Methods for Evaluating Solid Waste-Physical Chemical Methods, SW-846, U.S. Environmental Protection Agency, Washington, DC, (1997), http://www.epa.gov/SW-846/main.htm.

(18) Directive 2003/53/EC (the 26th amendment of the marketing and use of certain dangerous substances and preparations (nonylphenol, nonylphenol ethoxylate and cement).

(19) Hewlett, P. C. (1998).: “Chemistry of cement and concrete”. Four edition, Elsevier Butterworth- Heinemann editorial, Oxford.

(20) Vangelatos, I.; Angelopoulos, G. N.; Boufournos, D. (2009).: “Utilization of ferroalumina as raw material in the production of Ordinary Portland Cement”. Journal of Hazardous Material, 168, 473-478. http://dx.doi.org/10.1016/j.jhazmat.2009.02.049 PMid:19286318

(21) Gao, R. (2003).: “Composition of the Continental Crust, Treatise of Geochemistry”, vol. 3, Elsevier, the Crust, pp. 1-64.

(22) Mollah, M. Y. A.; Vempat, R. K.; Lin, T.C.; Cocke, D. L.: “The interfacial chemistry of solidifcaton/stabilizaton of metals in cement and pozzolanic material systems”. Waste Management, vol. 15, nº2, (1995), pp. 137-148. http://dx.doi.org/10.1016/0956-053X(95)00013-P

(23) Mas, J.L.; Bolívar, J.P.; Pérez-Moreno, J.P.; Martn, J.E.; SanMiguel, E.G.; García-Tenorio; R. : “External radiaton assessment in a wet phosphoric acid producton plant”. Applied Radiaton and Isotopes, Vol. 67 (2009) 1930-1938. http://dx.doi.org/10.1016/j.apradiso.2009.06.004 PMid:19596585

(24) Kovler, K.; Haquin, G.; Manasherov, V.; Ne'eman, E.; Lavi, N.: “Limitaton of radionuclides concentraton in building materials available in Israel”. Building and Environment, Vol. 37, (2002), pp. 531-537. http://dx.doi.org/10.1016/S0360-1323(01)00048-8




Copyright (c) 2012 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es