Materiales de Construcción, Vol 63, No 310 (2013)

Influence of different curing conditions on the pore structure and the early age properties of mortars with fly ash and blast-furnace slag

J. M. Ortega
Universidad de Alicante, Spain

I. Sánchez
Universidad de Alicante, Spain

M. A. Climent
Universidad de Alicante, Spain


In this work, the evolution of the microstructure, durability properties and mechanical strength of mortars made with commercial cements, which contain fly ash (between 21% and 35%) and ground granulated blast-furnace slag (between 66% and 80%), were studied. These mortars were exposed to three different environments during their hardening, an optimum laboratory condition, and two environments representing a mild Atlantic climate and a Mediterranean climate, respectively. As a reference, ordinary Portland cement mortars were also tested. The microstructure was characterized using mercury intrusion porosimetry. Regarding durability, the capillary suction coefficient and non-steady-state chloride migration coefficient were determined. Compressive strength was studied too. The tests were performed at 7, 28 and 90 days. The main conclusion of this work is that cements with slag and fly ash hardened under environmental conditions of Atlantic and Mediterranean climates, can develop good service properties after three months of hardening.


ground granulated blast-furnace slag; fly ash; hardening environment; microstructure; durability

Full Text:



(1) Bijen, J.: “Benefits of slag and fly ash”, Constr. Build. Mater., Vol. 10, nº 5 (1996), pp. 309-314.

(2) Nochaiya, T., Wongkeo, W., Chaipanich, A.: “Utilization of fly ash and silica fume and properties of Portland cement-fly ash-silica fume concrete”, Fuel, Vol. 89, nº 3 (2010), pp. 768-774.

(3) Jau, W.C., Tsay, D.S.: “A study of basic engineering properties of slag cement concrete and its resistance to sea water corrosion”, Cem. Concr. Res., Vol. 28, nº 10 (1998), pp. 1363-1371.

(4) Sánchez, I., López, M.P., Ortega, J.M. and Climent, M.A.: “Impedance spectroscopy: an efficient tool to determine the non-steady-state chloride diffusion coefficient in building materials”, Mat. and Corr., Vol. 62, nº 2 (2011), pp. 139-145.

(5) Geiseler, J., Kollo, H., Lang, E.: “Influence of blast furnace cements on durability of concrete structures”, ACI Mat. J., Vol. 92, nº 3 (1995), pp. 252-257.

(6) Papadakis, V.G.: “Effects of fly ash on Portland cement system, Part I Low-calcium fly ash”, Cem. Concr. Res., Vol. 29, nº 11 (1999), pp. 1727-1736.

(7) Wang, A., Zhang, C., Sun, W.: “Fly ash effects II. The active effect of fly ash”, Cem. Concr. Res., Vol. 34, nº 11 (2004), pp. 2057-2060.

(8) Manmohan, D., Mehta, P.K.: “Influence of pozzolanic, slag and chemical admixtures on pore size distribution and permeability of hardened cement pastes”, Cement, Concrete, and Aggregates, Vol. 3, nº 3 (1981), pp. 63-67.

(9) Sánchez, I., López, M.P. Climent, M.A.: “Effect of fly ash on chloride transport through concrete: Study by impedance spectroscopy” en: Beaudoin, J.J., Makar, J.M., Raki, L. (eds.): Durability and Degradation of Cement Systems: Corrosion and Chloride Transport; T4.04-4. Proceedings of the 12th International Congress on the Chemistry of Cement, National Research Council of Canada, Montreal, (2007).

(10) Leng, F., Feng, N., Lu, X.: “An experimental study on the properties of resistance to diffusion of chloride ions of fly ash and blast furnace slag concrete”, Cem. Concr. Res., Vol. 30, nº 6 (2000), pp. 989-992.

(11) Bouikni, A., Swamy, R.N., Bali, A.: “Durability properties of concrete containing 50% and 65% slag”, Constr. Build. Mater., Vol. 23, nº 8 (2009), pp. 2836-2845.

(12) Maltais, Y., Marchand, J.: “Influence of curing temperature on cement hydration and mechanical strength development of fly ash mortars”, Cem. Concr. Res., Vol. 27, nº 7 (1997), pp. 1009-1020.

(13) Schindler, A.K.: “Effect of temperature on hydration of cementitious materials”, ACI Mat. J., Vol. 101, nº 1 (2004), pp. 72-81.

(14) Escalante-García, J.I., Sharp, J.H.: “The microestructure and mechanical properties of blended cements hydrated at various temperatures”, Cem. Concr. Res., Vol. 31, nº 9 (2001), pp. 695-702.

(15) Ramezanianpour A.A., Malhotra, V.M.: “Effect of curing on the compressive strength, resistance to chloride-ion penetration and porosity of concretes incorporating slag, fly ash or silica fume”, Cem. Concr. Comp., Vol. 17, nº 2 (1995), pp. 125-133.

(16) Asociación Española de Normalización y Certificación. Cemento. Parte 1: Composición, especificaciones y criterios de conformidad de los cementos comunes. Norma UNE-EN 197-1. Madrid, España, 2000.

(17) Asociación Española de Normalización y Certificación. Métodos de ensayo de cementos. Parte 1: Determinación de resistencias mecánicas. Norma UNE-EN 196-1. Madrid, España, 2005.

(18) Deutsches Institut für Normung e.V. Standard atmospheres over aqueous solutions (saturated salt solutions, glycerol solutions). Deutsche Norm DIN 50 008 Part 1. Berlin, Germany, 1981.

(19) Cabeza, M., Merino, P., Miranda, A., Nóvoa, X.R., Sánchez, I.: “Impedance spectroscopy study of hardened Portland cement paste”, Cem. Concr. Res., Vol. 32, nº 6 (2002), pp. 881-891.

(20) Diamond, S.: “Aspects of concrete porosity revisited”, Cem. Concr. Res., Vol. 29, nº 8 (1999), pp. 1181-1188.

(21) Diamond, S.: “Mercury porosimetry. An inappropriate method for the measurement of pore size distributions in cement-based materials”, Cem. Concr. Res., Vol. 30, nº 10 (2000), pp. 1517-1525.

(22) Gallé, C.: “Effect of drying on cement-based materials pore structure as identified by mercury intrusion porosimetry. A comparative study between oven, vacuum and freeze-drying”, Cem. Concr. Res., Vol. 31, nº 10 (2001), pp. 1467-1477.

(23) Asociación Española de Normalización y Certificación. Durabilidad del hormigón. Métodos de ensayo. Determinación de la absorción de agua por capilaridad del hormigón endurecido. Método Fagerlund. Norma UNE 83.982, Madrid, España, 2008.

(24) Rilem recommendation TC 116-PCD: “Permeability of Concrete as a Criterion of its Durability”, Mater. Struct., Vol. 32, nº 217 (1999), pp. 174-179.

(25) Asociación Española de Normalización y Certificación. Durabilidad del hormigón. Acondicionamiento de muestras de hormigón para los ensayos de permeabilidad a gases y capilaridad. Norma UNE 83966. Madrid, España, 2008.

(26) Punkki, J., Sellevold, E.J.: “Capillary suction in concrete: Effects of drying procedure”, Nordic Concrete Research Publication, No. 15, 2/94, Oslo, December (1994).

(27) Nordtest. NT Build 492. Concrete, mortar and cement-based repair materials: Chloride migration coefficient from non-steady-state migration experiments. Espoo, Finland, 1999.

(28) ASTM Standard C 1202-97, Standard test method for electrical indication of concrete's ability to resist chloride ion penetration, Annual Book of ASTM Standard Section 4, Vol.04.02, 2000.

(29) Chindaprasirt, P., Jaturapitakkul, C., Sinsiri, T.: “Effect of fly ash fineness on compressive strength and pore size of blended cement paste”, Cem. Concr. Comp., Vol. 27, nº 4 (2005), pp. 425-428.

(30) Schiessl, P., Wiens, U.: “Rapid determination of chloride diffusivity in concrete with blending agents”, en: Proceedings of RILEM International Workshop on chloride penetration into concrete, pp. 115-125, (1995).

(31) Ortega, J.M., Sánchez, I., Climent, M.A.: “Influence of environmental conditions on the durability properties of slag cement mortars”, en: Zachar, J., Claisse, P., Naik, T.R., Ganjian, E. (eds.): Proceedings of the 2nd International Conference on Sustainable Construction Materials and Technologies, pp. 277-287, UWM Center for By-Products Utilization, Milwaukee, (2010).

(32) Detwiler, J., Kjellsen, K.O., Gjorv, O.E.: “Resistance to chloride intrusion of concrete cured at different temperatures”, ACI Mat. J., Vol. 88, nº 1 (1991), pp. 19-24.

(33) Barnett, S.J., Soutsos, M.N., Millard, S.G., Bungey, J.H.: “Strength development of mortars containing ground granulated blast-furnace slag: Effect of curing temperature and determination of apparent activation energies”, Cem. Concr. Res., Vol. 36, nº 3 (2006), pp. 434-440. doi: 10.1016/j.cemconres.2005.11.002.

(34) Thomas, M.D.A., Matthews, J.D.: “Performance of Pfa concrete in a marine environment - 10-year results”, Cem. Concr. Comp., Vol. 26, nº 1 (2004), pp. 5-20.

(35) Thomas, M.D.A., Scott, A., Bremmer, T., Bilodeau, A., Day, D.: “Performance of slag concrete in marine environment”, ACI Mat. J., Vol. 105, nº 6 (2008), pp. 628-634.

(36) Chalee, W., Ausapanit, P., Jaturapitakkul, C.: “Utilization of fly ash concrete in marine environment for long term design life analysis”, Mater. Design, Vol. 31, nº 3 (2010), pp. 1242-1249.

Copyright (c) 2013 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support