Materiales de Construcción, Vol 56, No 281 (2006)

Carbonation process in lime pastes with different water/binder ratio

M. Arandigoyen
Departamento de Química. Universidad de Navarra, Navarra, Spain

J. I. Álvarez
Departamento de Química. Universidad de Navarra, Navarra, Spain


Most research on binder carbonation is based on the analysis of depth changes in the carbonation front. Moreover, previous studies have dealt with mortars, where aggregates play a role in the variations in carbonation patterns. In the approach adopted in the present study, carbonation was determined in terms of the variation in weight resulting from CO2 absorption, and a new parameter (independent of the drying process), denominated A, was established. This parameter was assessed in several lime pastes with different W/B (water/binder) ratios and its variations were correlated to paste microstructure. Due to the type of porosity prevailing in lime pastes, diffusion took place according to Fick's law; water was retained not by capillarity but by surface adsorption. Drying did not retard carbonation in lime pastes


kinetics; microstructure; carbonation; blended pastes

Full Text:



(1) A. Steffens, D. Dinkler, H. Ahrens, «Modelling carbonation for corrosion rick prediction of concrete structures», Cerno Concr: Res., 32 (2002), pp. 935-941. doi:10.1016/S0008-8846(02)00728-7

(2) M. A. Sanjuán, C. del Olmo, «Carbonation resistance of one industrial mortar used as a concrete coating», Build Environ., 36 (2001), pp. 949-953.

(3) Y. Lo, H. M. Lee, «Curing effects on carbonation of concrete using a phenolphthalein indicator and Fourier-transform infrared spectroscopy», Build. Environ., 37 (2002), pp. 507-514. doi:10.1016/S0360-1323(01)00052-X

(4) C. Rodríguez-Navarro, O. Cazalla, «Uesegang pattern development in carbonation traditional lime mortars», Proc. R. Soco Lond., 458 (2002), pp. 2261-2273

(5) Y. F. Houst, F. H. Wittmann, «Influence of porosity and water content on the diffusivity of C02 through hydrated cement paste», Cem. Cocr. Res., 32 (2002), pp. 1923-1930.

(6) R. M. Oheilly, J. Tudo, M. Quéneudec, «Influence of climatic conditions on the carbonation of quicklime», JMEPEG, 7 (1998), pp. 789-795. doi:10.1361/105994998770347378

(7) S. Shih, C. Ho, Y. Song, J. Un, «Kinetics of the reaction of Ca(OH)2 with C02 at low temperature», Ind. Eng. Chem. Res., 38 (1999), pp. 1316-1322. doi:10.1021/ie980508z

(8) R. M. Oheilly, J. Tudo, Y. Sebai Bi, M. Quéneudec, «Influence of storage conditions on the carbonation of powdered Ca(OH)2», Construction and Building Materials, 16 (2002), pp. 155-161. doi:10.1016/S0950-0618(02)00012-0

(9) K. Van Balen, «Carbonation reaction of lime, kinetic at ambient temperature», Cem. Concr. Res., 35 (2004), pp. 647-657. doi:10.1016/j.cemconres.2004.06.020

(10) K. Van Balen, O. Van Gemert, «Modelling lime mortar carbonation», Mater. Struct., 27 (1994), pp. 393-398. doi:10.1007/BF02473442

(11) N. M. Zouridakis, 1. G. Economou, K. P. Tzevelekos, E. S. Kikkinides, «Investigation of the physicochemical characteristics of ancient mortars by static and dynamic studies», Cem. Concr. Res., 30 (2000), pp. 1151-1155.

(12) S. Sánchez-Moral, J. García-Guinea, L. Luque, R. González-Martín, P. López-Arce, «Cinética de carbonatación de morteros experimentales de cal de tipo romano», Mater. Construcc., vol. 54, nO 275 (2004), pp. 23-37.

(13) J. Lanas, J. 1. Alvarez, «Masonry repair Iime-based mortars: Factors affecting the mechanical behaviour», Cem. Concr. Res., 33 (2003), pp. 1867-1876 doi:10.1016/S0008-8846(03)00210-2

(14) B. Johannesson, P. Utgenannt, «Microstructural changes caused by carbonation of cement mortar», Cem. Concr. Res., 31 (2001), pp. 925-931. doi:10.1016/S0008-8846(01)00498-7

(15) Y. F. Houst, F. H. Wittmann, «Oept profiles of carbonates formed during natural carbonation», Cem. Concr. Res., 24 (1994), pp. 1165-1176.

(16) M. Sahimi, Applications ofpercolation theory, Ed. Taylor & Francis, 1994.

(17) T. Ishida, K. Maekawa, «Modelling of pH profile in pore water based on mass transport and chemical equilibrium theory», Proceeding of JSCE., 47 (2000).

(18) M. Arandigoyen, J. L. pérez Bernal, M. A. Bello López, J. 1. Álvarez, «Lime pastes with different kneading water: pore structure and capillary porosity», Appl. Surf. Sci., 252(5) (2005), pp. 1449-1459. doi:10.1016/j.apsusc.2005.02.145

(19) M. Arandigoyen, J. I. Álvarez, «Blended pastes of cement and lime: Pore structure and capillary porosity», Appl. Surf. Sci., In Press, Corrected Proof, Available online 11 November 2005.

(20) RILEM, Mater. Struct., 13 (1980), pp. 175-253.

(21) V. T. Ngala, C. L. Page, «Effects of carbonation on pore structure and diffusional properties on hydrated cement pastes», Cem. Concr. Res., 27 (7) (1997), pp. 995-1007. doi:10.1016/S0008-8846(97)00102-6

(22) W. P. S. Oías, «Reduction of concrete sorptivity with age through carbonation», Cem. Concr. Res., 30 (2000), pp. 1255-1261. doi:10.1016/S0008-8846(00)00311-2

(23) O. Cazalla, C. Rodríguez-Navarro, «Ageing of lime putty: Effect on traditional lime mortar carbonation», J. Am. Ceram. Soc., 83 (2000), pp. 1070-1076.

(24) M. B. Weimann, V. C. Li, «Hydral behaviour of engineered cementitious composites (ECC)>>, Restoration ofBuilding andMonuments, 9 (5) (2003), pp. 513-534.

(25) A. Stazi, M. O'Orazio, E. Quagliarini, «In-life prediction of hydrometric behaviour of building materials: an application of fractal geometry to the determination of adsorption and suction properties», BuJ'ld. Environ., 37 (2002), pp. 733-739.

(26) S. Chatterji, «An explanation for the unsaturated state of water stored concrete», Cem. Concr. Comp., 26 (2004), pp. 75-79. doi:10.1016/S0958-9465(02)00124-5

Copyright (c) 2006 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support