Corrosion rate of steel embedded in blended Portland and fluid catalytic cracking catalyst residue (FC3R) cement mortars

Authors

  • E. Zornoza Universidad Politécnica de Valencia, Valencia
  • P. Garcés Universidad de Alicante, Alicante
  • J. Payá Universidad Politécnica de Valencia, Valencia

DOI:

https://doi.org/10.3989/mc.2008.39006

Keywords:

corrosion, catalyst, carbonation, steel, cement

Abstract


This paper reports on a study of the corrosion levels in steel bars embedded in mortars made with a blend of Portland cement and (0-20%) spent fluid catalytic cracking catalyst residue (FC3R), with a variable (0.3-0.7) water/binder (w/b) ratio. The specimens were stored in the following conditions: relative humidity of 40, 80 or 100% and CO2 concentrations of 5 and 100%. The steel corrosion rate was measured with polarization resistance techniques. In the absence of aggressive agents, the steel was found to remain duly passivated in mortars with an FC3R content of up to 15% under all the conditions of relative humidity tested. The reinforcement corrosion level in mortars with a w/b ratio of 0.3 and 15% FC3R subjected to accelerated carbonation was similar to the level observed in the unblended Portland cement control mortar.

Downloads

Download data is not yet available.

References

(1) Baccay, M. A., Otsuki, N., Nishida, T., Maruyama, S.: “Influence of cement type and temperature on the rate of corrosion of steel in concrete exposed to carbonation”. Corrosion 62 (2006) 811-821.

(2) Pal, S. C., Mukherjee, A. S. R.: Pathak. “Corrosion behavior of reinforcement in slag concrete”. ACI Materials Journal 99 (2002) 521-527.

(3) Parrot, L. J.: “Some effects of cement and curing upon carbonation and reinforcement corrosion in concrete”. Materials and Structures 29 (1996) 164-173. doi:10.1007/BF02486162

(4) Parrot. L. J. “A study of carbonation-induced corrosion”. Magazine of Concrete Research 46 (1994) 23-28.

(5) Batis, G., Pantazopoulou, P., Tsivilis, S., Gadogiannis, E.: “The effect of metakaolin on the corrosion behaviour of cement mortars”. Cement & Concrete Composites 27 (2005) 125-130. doi:10.1016/j.cemconcomp.2004.02.041

(6) Jiang, L. H., Liu, Z. Q., Ye, Y. Q.: “Durability of concrete incorporating large volumes of low-quality fly ash”. Cem. Concr. Res. 34 (2004) 1467-1469. doi:10.1016/j.cemconres.2003.12.029

(7) Montemor, M. F., Cunha, M. P., Ferreira, M. G., Simoes, A. M.: “Corrosion behaviour of rebars in fly ash mortar exposed to carbon dioxide and chlorides”. Cement & Concrete Composites 24 (2002) 45-53. doi:10.1016/S0958-9465(01)00025-7

(8) Payá, J., Monzó, J., Borrachero, M. V., Velázquez, S.: “Evaluation of the pozzolanic activity of fluid catalytic cracking residue (FCC). Thermogravimetric analysis studies on FCC-Portland cement pastes”. Cem. Concr. Res. 33 (2003) 603-609. doi:10.1016/S0008-8846(02)01026-8

(9) Payá, J., Monzó, J., Borrachero, M. V., Velázquez, S., Bonilla, M.: “Determination of the pozzolanic activity of fluid catalytic cracking residue. Thermogravimetric analysis studies on FC3R-lime pastes”. Cem. Concr. Res. 33 (2003) 1085-1091. doi:10.1016/S0008-8846(03)00014-0

(10) Payá, J., Monzó, J., Borrachero, M. V.: “Fluid catalytic cracking catalyst residue (FC3R). An excellent mineral by-product for improving early-strength development of cement mixtures”. Cem. Concr. Res. 29 (1999) 1773-1779. doi:10.1016/S0008-8846(99)00164-7

(11) Payá, J., Monzó, J., Borrachero, M. V., Amahjour, F., Girbés, I., Velázquez, S., Ordónez, L. M.: “Advantages in the use of fly ashes in cements containing pozzolanic combustion residues: silica fume, sewage sludge ash, spent fluidized bed catalyst and rice husk ash”. Journal of Chemical Technology and Biotechnology 77 (2002) 331-335. doi:10.1002/jctb.583

(12) Su, N., Fang, H.-Y., Chen, Z.-H. Liu, F.-S.: “Reuse of waste catalyst from petrochemical industries for cement substitution”. Cem. Concr. Res. 30 (2000) 1773-1783. doi:10.1016/S0008-8846(00)00401-4

(13) Alcocel, E. G., Garces, P., Martinez, J. J., Payá, J., Andión, L. G.: “Effect of sewage sludge ash (SSA) on the mechanical performance and corrosion levels of reinforced Portland cement mortars”. Mater. Construcc. 56, nº 282, pp. 31-43 (2006). doi:10.3989/mc.2006.v56.i282.25

(14) Blanco-Varela, M. T., Martínez-Ramírez, S., Gener, M., et al.: “Modifications induced by adding natural zeolitic pozzolans to cement paste”. Mater. Construcc. 55, nº 280, pp. 27-42 (2005).

(15) Chen, H.-L., Tseng, Y.-S., Hsu, K.-C.: “Spent FCC catalyst as a pozzolanic material for high-performance mortars”. Cement & Concrete Composites 26 (2004) 657-664. doi:10.1016/S0958-9465(03)00048-9

(16) Wu, J.-H., Wu, W.-L., Hsu, K.-C.: “The effect of waste oil-cracking catalyst on the compressive strength of cement pastes and mortars”. Cem. Concr. Res. 33 (2003) 245-253. doi:10.1016/S0008-8846(02)01006-2

(17) Wu, W.-L., Wu, J.-H., Hsu, K.-C., Yen, D.-S.: “Subproducto del fraccionamiento catalítico del petróleo: características, actividad puzolánica y su efecto en las propiedades del mortero”. Cemento Hormigón 850 (2003) 18-25.

(18) Hsu, K.-C., Tseng, Y.-S., Ku, F.-F., Su, N.: “Oil cracking waste catalyst as an active pozzolanic material for superplasticized mortars”. Cem. Concr. Res. 31 (2001) 1815-1820. doi:10.1016/S0008-8846(01)00693-7

(19) Pacewska, B., Wilinska, I., Bukowska, M., Nocun-Wczelik, W.: “Effect of waste aluminosilicate material on cement hydration and properties of cement mortars”. Cem. Concr. Res. 32 (2002) 1823-1830. doi:10.1016/S0008-8846(02)00873-6

(20) Pacewska, B., Bukowska, M., Wilinska, I., Swat, M.: “Modification of the properties of concrete by a new pozzolan. A waste catalyst from the catalytic process in a fluidized bed”. Cem. Concr. Res. 32 (2002) 145-152. doi:10.1016/S0008-8846(01)00646-9

(21) Stern, M., Geary, A. L.: “A therical analysis of the shape of polarization curves”. Journal of Electrochemical Society 104 (1957) 56. doi:10.1149/1.2428496

(22) Miranda, J. M., Otero, E., Gonzalez, J. A., et al.: “Behaviour of corroded steel in a Ca(OH)(2)-saturated solution and in cement mortar. Possibility of rehabilitation”. Mater. Construcc. 57, nº 285, pp. 5-16 (2007). doi:10.3989/mc.2007.v57.i285.35

(23) Andrade, C., González, J. A.: “Quantitavie measurements of corrosion rate of reinforcing steels embedded in concrete using polarization resistance measurements”. Werkst. Korros. 29 (1978) 515. doi:10.1002/maco.19780290804

(24) Anzola, E., Malave, R., Contreras, A., et al.: “Effect of steel surface conditions on reinforcing steel corrosion in concrete exposed to marine environments”. Mater. Construcc. 55, nº 279, pp. 17-24 (2005).

(25) Ahmed, S. F. U., Maalej, M., Paramasivam, P., Mihashi, H.: “Assessment of corrosion-induced damage and its effect of the structural behaviour of RC beams containing supplementary cementitious materials”. Progress in Structural Engineering and Materials 8 (2006) 69-77. doi:10.1002/pse.214

(26) Hou, J., Chung, D. D. L.: “Effect of admixtures in concrete on the corrosion resistance of steel reinforced concrete”. Corrosion Science 42 (2000) 1489-1507. doi:10.1016/S0010-938X(99)00134-1

(27) Dotto, J. M. R., de Abreu, A. G., Dal Molin, D. C. C., Müller., I. L.: “Influence of silica fume addition on concretes physical properties and on corrosion behaviour of reinforcement bars”. Cement & Concrete Composites 26 (2004) 31-39. doi:10.1016/S0958-9465(02)00120-8

(28) Dinakar, P., Babu, K. G., Santhanam., M.: “Corrosion behaviour of blended cements in low and medium strength concretes”. Cement & Concrete Composites 29 (2007) 136-145. doi:10.1016/j.cemconcomp.2006.10.005

(29) Güneyisi, E., Özturan, T., Gesoglu, M.: “A study on reinforcement corrosion and related properties of plain and blended cement concretes under different curing conditions”. Cement & Concrete Composites 27 (2005) 449-461. doi:10.1016/j.cemconcomp.2004.05.006 (30) Yeau, K. Y., Kim, E. K.: “An experimental study on corrosion resistance of concrete with ground granulate blast-furnace slag”. Cem. Concr. Res. 35 (2005) 1391-1399. doi:10.1016/j.cemconres.2004.11.010

(31) Gu, P., Beaudoin, J. J.: “Obtaining effective half-cell potential measurements in reinforced concrete structures”. Construction Technology Updates No. 18. Ed. National Research Council of Canada, Ottawa, 1998.

(32) Zornoza, E., Garcés, P., Monzó, J., Borrachero, M. V., Payá, J.: “Compatibility of fluid catalytic cracking catalyst residue (FC3R) with various types of cement”. Advances in Cement Research 19:3 (2007) 117-124. doi:10.1680/adcr.2007.19.3.117

(33) Arandigoyen, M., Álvarez, J. I.: “Pore structure and carbonation in blended lime-cement pastes”. Mater. Construcc. 56, nº 282, pp. 17-30 (2006). doi:10.3989/mc.2006.v56.i282.24

(34) Arandigoyen, M., Álvarez, J. I.: “Carbonation process in lime pastes with different water/binder ratio”. Mater. Construcc. 56, nº 281, pp. 5-18 (2006). doi:10.3989/mc.2006.v56.i281.88

(35) Norma Americana ASTM C876. “Standard test method for half-cell potentials of uncoated reinforcing steel in concrete”.

Downloads

Published

2008-12-30

How to Cite

Zornoza, E., Garcés, P., & Payá, J. (2008). Corrosion rate of steel embedded in blended Portland and fluid catalytic cracking catalyst residue (FC3R) cement mortars. Materiales De Construcción, 58(292), 27–43. https://doi.org/10.3989/mc.2008.39006

Issue

Section

Research Articles

Most read articles by the same author(s)

1 2 > >>