Influence of the type of lightweight clay brick on the equivalent thermal transmittance of different types of façades on buildings
DOI:
https://doi.org/10.3989/mc.2016.08115Keywords:
Brick, Ceramic, Physical properties, Thermal analysis, Finite element methodAbstract
This paper compares the equivalent thermal transmittances of different façades built using commercial clay bricks with three different thicknesses and façades made using the same method but with ceramic bricks with optimized rhomboidal interior geometry. Equivalent thermal transmittances of 0.300 W/m2·K were recorded for the rhomboidal brick with a thickness of 0.290 m and a façade with thermo-acoustic insulation and a large format brick on the interior, but the final thickness of the façade was 0.445 m. For ventilated façades made of the proposed rhomboidal brick with thicknesses of 0.290 and 0.240 m an 8–9% improvement was found, with values of 0.312 W/m2·K and 0.339 W/m2·K, respectively. It can be concluded that in view of the small difference in thermal terms, the best option is to use a brick 0.240 m thick, as the overall thickness of the façade will not then exceed 0.300 m.
Downloads
References
1. Theodosiou, T.G.; Papadopoulos, A.M. (2007) The impact of thermal bridges on the energy demand of buildings with double brick wall constructions. Energ. Buildings 40 [11], 2083-2089. http://dx.doi.org/10.1016/j.enbuild.2008.06.006
2. Eurostat 2013. Energy, transport and environment indicators. ISSN 1725-4566. (online data code: nrg_100a). http://ec.europa.eu/eurostat/documents/3930297/5968878/KS-DK-13-001-EN.PDF.
3. Raimondo, M.; Dondi, M.; Mazzanti, F.; Stefanizzi, P.; Bondi, P. (2005) Equilibrium moisture content of clay bricks: The influence of the porous structure, Build. Environ. 42 [2], 926-932. http://dx.doi.org/10.1016/j.buildenv.2005.10.017
4. Antar Mohamed, A. (2010) Thermal radiation role in conjugate heat transfer across a multiple-cavity building brick, Energy 35 [8], 3508-3516. http://dx.doi.org/10.1016/j.energy.2010.04.055
5. GarcÌa, X. (2003) Idoneidad de los cerramientos monocapa para viviendas Bioclim·ticas en emplazamientos de elevada severidad clim·tica, Universidad PontÌficia Comillas de Madrid. Instituto de InvestigaciÛn TecnolÛgica. http://www.iit.upcomillas.es/publicaciones/mostrar_publicacion_working_paper.php.en?id=66.
6. Morales, M.P.; Ju·rez, M.C.; López-Ochoa, L.M.; Doménech, J. (2010) Study of the geometry of a voided clay brick using rectangular perforations to optimize its thermal properties, Appl. Therm. Eng. 31 [11-12], 2063-2065. http://dx.doi.org/10.1016/j.applthermaleng.2011.02.033
7. Sastre, V. (2008) Bloques cer·micos de alto aislamiento térmico, Termoarcilla ECO, Con arquitectura. http://www.conarquitectura.com/articulos/24-10-2012-12-50-07-26.pdf (Accessed February 2016).
8. Consorcio Termoarcilla & LabeinTecnalia (2005) InvestigaciÛn de las condiciones del Bloque Termoarcilla para el cumplimiento de las exigencias del nuevo CTE. Propiedades tÈrmicas. www.termoarcilla.com.
9. Li, L.P.; Wu, Z.G.; He, Y.L.; Lauriat, G.; Tao, W.Q. (2008) Optimization of the configuration of 290◊140◊90 hollow clay bricks with 3-D numerical simulation by finite volume method, Energ. Buildings 40 [10], 1790-1798. http://dx.doi.org/10.1016/j.enbuild.2008.03.010
10. Morales, M.P.; Juarez, M.C.; Mu-oz, P.; Gómez, J.A. (2011) Study of the geometry of a voided clay brick using non-rectangular perforations to optimise its thermal properties, Energ. Buildings 43 [9], 2494-2498. http://dx.doi.org/10.1016/j.enbuild.2011.06.006
11. Lourenco, P.B.; Vasconcelos, G.; Medeiros, P.; Gouveia, J. (2010) Vertically perforated clay brick masonry for loadbearing and non-loadbearing masonry walls. Constr. Build. Mater. 24, 2317-2330. http://dx.doi.org/10.1016/j.conbuildmat.2010.04.010
12. Del Coz Díaz, J.J.; Neto, P.J.G.; Sierra, J.L.S.; Biempica, C.B. (2008) Nonlinear thermal optimization of external light concrete multi-holed brick walls by finite element method. Int. J. Heat Mass Trans. 51, 1530-1541. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.07.029
13. Li, L.P.; Wu, Z.G.; He, Y.L.; Lauriat, G.; Tao, W.Q. (2008) Numerical thermal optimization of the configuration of multi-holed clay bricks used for constructing building walls by the finite volume method. Int. J. Heat Mass Trans. 51, 3669-3682. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.06.008
14. Morales, M.P.; Juarez, M.C.; López-Ochoa, L.M.; Mu-oz, P. (2012) Influence of tongue and groove system on the thermal properties of large-format voided clay bricks for single-leaf walls, Constr. Build. Mater. 30, 169-173. http://dx.doi.org/10.1016/j.conbuildmat.2011.12.006
15. Ghazi Wakili, K.; Tanner, Ch. (2003) U-value of a dried wall made of perforated porous clay bricks: Hot box measurement versus numerical analysis, Energ. Buildings 35 [7], 675-680. http://dx.doi.org/10.1016/s0378-7788(02)00209-8
16. Juarez, M.C.; Morales, M.P.; Mu-oz, P.; Gómez, J.A. (2012) Influence of Horizontal Joint on the Thermal Properties of Single-leaf Walls with Lightweight Clay Bricks, Energ. Buildings 49, 362-366. http://dx.doi.org/10.1016/j.enbuild.2012.02.033
17. Morales, M.P.; Ju·rez, M.C.; Mu-oz, P.; MendÌvil, M.A.; Ruiz, J.A. (2014) Possibilities for improving the equivalent thermal transmittance of single-leaf walls for buildings, Energ. Buildings 69, 473-480. http://dx.doi.org/10.1016/j.enbuild.2013.11.038
18. Luciana, C.S. Herek; Carla Eponina, Hori; Miria Hespanhol, Miranda Reis; Diaz Mora, Nora; Granhem Tavares, Celia Regina; Bergamasco, Ros,ngela (2012) Characterization of ceramic bricks incorporated with textile laundry sludge, Ceram. Int. 38 [2], 951-959. http://dx.doi.org/10.1016/j.ceramint.2011.08.015
19. Alonso-Santurde, R.; Coz, A.; Viguri, J.R.: AndrÈs, A. (2012) Recycling of foundry by-products in the ceramic industry: Green and core sand in clay bricks. Constr. Build. Mater. 27, 97-106. http://dx.doi.org/10.1016/j.conbuildmat.2011.08.022
20. Bilgin, N.; Yeprem, H.A.; Arslan, S.; Bilgin, A.; Günay, E.; Marsoglu, M. (2012) Use of waste marble powder in brick industry. Constr. Build. Mater. 29, 449-457. http://dx.doi.org/10.1016/j.conbuildmat.2011.10.011
21. Mu-oz, P.; Juárez, M.C.; Morales, M.P.; MendÌvil, M.A. (2013) Improving the thermal transmittance of singlebrick wall built of clay bricks lightened with paper pulp. Energ. Buildings 59, 171-180. http://dx.doi.org/10.1016/j.enbuild.2012.12.022
22. Raut, S.P.; Ralegaonkar, R.V.; Mandavgane, S.A. (2011) Development of sustainable construction material using industrial and agricultural solid waste: A review of wastecreate bricks. Constr. Build. Mater. 25, 4037-4042. http://dx.doi.org/10.1016/j.conbuildmat.2011.04.038
23. Spanish Standard. " Código Técnico de la Edificación. Documento Básico. Ahorro de EnergÌía ". CTE-DB-HE (2006). http://www.codigotecnico.org (Accessed February 2016).
24. Spanish Standard."Reglamento particular de la marca AENOR para piezas de arcilla cocida para fábricas a revestir ". AENOR RP 34-14. (2009). http://www.aenor.es/ documentos/certificacion/reglamentos/w_RP_34-14_2009- 06-01.pdf (Accessed February 2016).
25. European Standard, EN 12939:2000, Thermal performance of building materials and products - determination of thermal resistance by means of guarded hot plate and heat flow meter methods - thick products of high and medium thermal resistance. European Committee for Standardization.
26. European Standard, EN 12664:2001, thermal performance of building materials and products - determination of thermal resistance by means of guarded hot plate and heat flow meter methods - dry and moist products of medium and low thermal resistance. European Committee for Standardization.
27. European Standard, EN 1745:2002, "Masonry and masonry products. Methods for determining design thermal values ".
28. European and International Standard, EN ISO 6946:1996, "Building components and building elements. Thermal resistance and thermal transmittance. Calculation method".
29. European and International Standard, EN ISO 10 211-1:1995, "Thermal bridges in building construction. Heat flows and surface temperatures. Part 1: General calculation methods ".
30. European and International Standard, EN ISO 10 211- 2:2002, " Thermal bridges in building construction. Heat flows and surface temperatures. Part 2: Thermal linear bridges ".
31. International Standard, ISO 10456:2007 Building materials and products. Procedures for determining declared and design thermal values http://www.iso.org/iso/catalogue_detail.htm%3Fcsnumber=40966 (Accessed February 2016).
32. International Standard, ISO 8990:1994, 2006. p. 50748. Thermal insulation - determination of steady-state thermal transmission properties - calibrated and guarded hotbox.
33. COMSOL 4.2a (2005) Multiphysics Modeling and Engineering Simulation Software. [CD ROM] COMSOL AB; http://www.comsol.com (Accessed February 2016).
34. Interempresas. CerámicaUtzubar. https://www.interempresas. net/Construccion/FeriaVirtual/Producto-Termoarcillas- Utzubar-Bloque-88514.html (Accessed February 2016).
35. Vivancos, J.L.; Soto, J.; Pérez, I.; Ros-Lis, J.V.; Martínez- Má-ez, R. (2009) A new model based on experimental results for the thermal characterization of bricks, Build. Environ. 44 [5], 1047-1052. http://dx.doi.org/10.1016/j.buildenv.2008.07.016
36. Thermoacustical para la edificación. W‹RTH. http://www.wurth.es/media/pdf_folletos/thermoacustical.pdf (Accessed February 2016).
37. Cuantificación de la eficiencia de la fachada cer·mica ventilada mediante tÈcnicas de la mec·nica de fluidos computacional (2011). Bol. Soc. Esp. Ceram. Vidr. 50 [2], 99-108.
37. Cuantificación de la eficiencia de la fachada cer·mica ventilada mediante tÈcnicas de la mec·nica de fluidos computacional (2011). Bol. Soc. Esp. Ceram. Vidr. 50 [2], 99-108.
38. Mandilaras, I.; Atsonios, I.; Zannis, G.; Founti, M. (2014) Thermal performance of a building envelope incorporating ETICS with vacuum insulation panels and EPSI, Energ. Buildings 85, 654-665 2014. http://dx.doi.org/10.1016/j.enbuild.2014.06.053
39. Barreira, E; de Freitas, V.P. (2013) Experimental study of the hygrothermal behaviour of External Thermal Insulation Composite Systems (ETICS), Build. Environ. 63, 31-39. http://dx.doi.org/10.1016/j.buildenv.2013.02.001
40. Ventajas tÈcnicas de los sistemas de aislamiento de fachadas por el exterior. Técnica Constructiva (2011) Colegio de Aparejadores, Arquitectos TÈcnicos e Ingenieros de la Edificación de Valencia. http://www.caatvalencia.es/articulos/2012/VIR02125.pdf (Accessed February 2016).
41. European and International Standard, UNE-EN 13162:2009, - Thermal insulation products for buildings-Factory made mineral wool (MW) products-Specification. .
42. European and International Standard. UNE-EN 998-2:2012, - Specification for mortar for masonry-Part 2: Masonry mortar .
43. Cerámica Marlo. Soluciones constructivas. http://www. ceramicamarlo.com/es/soluciones-constructivas-familia.asp?id_tipo=3 (Accessed February 2016).
44. Isober. Saint Gobain http://www.isover.es/Aislamiento-en-la-Edificacion/Aplicaciones/Aplicaciones-Edificacion-Residencial / PARTICIONES-INTERIORES-VERTICALES-Y-MEDIANERIAS/Elementos-dedos-hojas.-Tipo-2./Elementos-dos-hojas.-Tipo-2-P3.2/Descripcion (Accessed February 2016).
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read here the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.