Estudio experimental del comportamiento a compresión de probetas de hormigón de resistencias bajas y medias confinadas con tejidos de fibras de carbono y con defectos muy importantes de ejecución
DOI:
https://doi.org/10.3989/mc.2016.08315Palabras clave:
Hormigón, Composite, Resistencia a la compresión, Deformación, Módulo elásticoResumen
En este trabajo se estudia el comportamiento de hormigones de resistencias bajas y medias confinados con CFRP. Se han realizado 3 ciclos de carga llegando en algunos casos a niveles de tensión que han microfisurado internamente el hormigón, lo que ha permitido estudiar la rigidez residual y el comportamiento de probetas confinadas con el hormigón totalmente microfisurado. Posteriormente todas las probetas se han ensayado a compresión hasta rotura. Los refuerzos se han realizado con buenas condiciones de ejecución y simulando grandes defectos para poder evaluar la eficacia de los elementos confinados cuando las condiciones de ejecución no son las correctas. Los resultados muestran que el efecto de confinamiento es superior en hormigones poco resistentes, el comportamiento de las probetas reforzadas es poco sensible a grandes defectos de ejecución y su rigidez es inferior al de las probetas originales cuando se ensayan hasta el 40% de la tensión de rotura.
Descargas
Citas
Maaddaway, T. (2009) Strengthening of eccentrically loaded reinforced concrete columns with fiber-reinforced polymer wrapping system: experimental investigation and analytical modelling. J. Compos. Constr. 13 [1], 13-24. https://doi.org/10.1061/(ASCE)1090-0268(2009)13:1(13)
Machida, A. (Ed) (1993) State of the art report on continuous fiber reinforcing materials. Second Research Committee on CFRM, Japan Society of Civil Engineers: Concrete Engineering Series 3. Tokyo.
American Concrete Institute (2008) ACI 440.2R-08. Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures. Detroit, Mich.: American Concrete Institute.
Neale, K.W.; Labousièrre, P. (1992) Advanced composites materials in bridges and structures. Proc. 1st Int. Conf. On Advanced Composites Materials in Bridges and Structures, CSCE, Sherbrocke, Quebec, Canada.
Nanni, A.; Di Tomaso, A.; Arduini, M. (1996) International research on advanced composites in construction, National Science Foundation, Arlington, Va, Final report No. IRACC-96.
Saadatmanesh, H.; Ehsani, M.R.; Li, M.W. (1994) Strength and ductility of concrete columns externally reinforced with fiber composite straps. ACI Structural J. 91 [4], 434-447.
Elsanadedy, H.M.; Al-Salloum, Y.A.; Abbas, H.; Alsayed, S.H. (2012) Prediction of strength parameters of FRPconfined concrete. Comp. Part B: Eng.. 43 [2], 228-239. https://doi.org/10.1016/j.compositesb.2011.08.043
International Federation for Structural Concrete (CEBFIB), (2001) Externally bonded FRP reinforcement for RC structures. fib Bulletin 14, Laussanne, Switzerland.
Japan Society of Civil Engineers. (2001) Recommendations for upgrading of concrete structures with use of continuos fiber sheets. In: Maruyama K. (Ed). Concrete Engineering Series 41: March 2001.
CNR-DT 200/2004 (2004) Guide for the design and construction of externally bonded FRP systems for strengthening existing structures, Advisory Committee on Technical Recommendations for Construction, National Research Council, Rome, Italy.
Toutanji, H. (1999) Stress-strain characteristics of concrete columns externally confined with advanced fiber composites sheets. ACI Mat. Journal. 96 [3], 397-404.
Nanni, A.; Norris, M.S.; Bradford, N.M. (1993) Lateral confinement of concrete using FRP reinforcement, In Proc., International Symposium on FRP Reinforcement, Vancouver, Canada, ACI SP-138 American Concrete Institute, March 30-31 1993, 193-209.
Larralde, J. (1997) Compressive strength of small concrete specimens confined with fibreglass laminates. Cem. Concr. Aggreg 19 [1], 17-21. https://doi.org/10.1520/CCA10016J
Saafi, M.; Toutanji, H.; Li, Z. (1999) Behaviour of concrete columns confined with fiber reinforced polymer tubes. ACI Mat. Journal. 96 [4], 500-509.
Csuka, B.; Kollár, L.P. (2010) FRP confined circular concrete columns subjected to concentric loading. Reinf. Plast. Compos. 29 [23], 3504-3520. https://doi.org/10.1177/0731684410381448
Aire, C.; Gettu, R.; Casas, J.R.; Marques, S.; Marques, D. (2010) Concrete laterally confined with fibre-reinforced polymers (FRP): Experimental study and theoretical model. Mater. Construcc. 60 [297], 19-31. https://doi.org/10.3989/mc.2010.45608
de Diego, A., Arteaga, A., Fernández, J., Perera, R., & Cisneros, D. (2015) Behaviour of FRP confined concrete in square columns. Mater. Construcc, 65(320): e069. https://doi.org/10.3989/mc.2015.05414
Csuka, B.; Kollár, L.P. (2012) Analysis of FRP confined circular columns under eccentric loading. Compos. Struct. 94 [3], 1106-1116. https://doi.org/10.1016/j.compstruct.2011.10.012
Daugevi_ius, M.; Valivonis, J.; Beinaravi_ius, A.; Skuturna, T.; Budvytis, M. (2013) Experimental investigation of the load carrying capacity of eccentrically loaded reinforced concrete elements strengthened with CFRP. Proc. Eng. 57, 232-237.
Harmon, T.G.; Ramakrishran, S.; Wang, E.H. (1998) Confined concrete subjected to uniaxial monotonic loading. J. Eng. Mechan. 124 [12], 1303-1309. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:12(1303)
Li, Q.; Ansari, F. (2000) High-strength concrete in triaxial compression by different size of specimens. ACI Materials Journal. 97 [6], 684-689.
Setunge, S.; Attard, M.M.; Darvall, P.L. (1993) Ultimate strength of confined very high-strength concretes. ACI Structural Journal. 90 [6], 632-641.
Xie, J.; Elwi, A.E.; MacGregor, J.G. (1995) Mechanical properties of three high-strength concretes containing silica fume. ACI Mat. Journal. 92 [2], 135-145.
Aire, C. (2002) Estudio experimental del comportamiento del hormigón confinado sometido a compresión. PhD Thesis. Universitat Politècnica de Catalunya, Spain.
Almusallam, T.H. (2007) Behaviour of normal and highstrength concrete cylinders confined with E-glass/epoxi composite laminates. Comp. Part B: Eng. 38 [5-6], 629-639. https://doi.org/10.1016/j.compositesb.2006.06.021
Micelli, F.; Modarelli, R. (2013) Experimental and analytical study on properties affecting the behaviour of FRPconfined concrete. Comp. Part B: Eng. 45 [1], 1420-1431. https://doi.org/10.1016/j.compositesb.2012.09.055
Vincent, T.; Ozbakkaloglu, T. (2013) Influence of concrete strength and confinement method on axial compressive behavior of FRP confined high and ultra high-strength concrete. Comp. Part B: Eng. 50, 413-428. https://doi.org/10.1016/j.compositesb.2013.02.017
Lam, L.; Teng, J.G. (2009) Stress-strain model for FRPconfined concrete under cyclic axial compression. Eng. Struct. 31, 308-321. https://doi.org/10.1016/j.engstruct.2008.08.014
Abbsania, R.; Ziaadiny, H. (2010) Behavior of concrete prisms confined with FRP composites under axial cyclic compression. Eng. Struct. 32(3), 648-655. https://doi.org/10.1016/j.engstruct.2009.11.011
Abbsania, R.; Hosseinpour, F.; Rostamian, M.; Ziaadiny, H. (2013) Cyclic and monotonic behavior of FRP confined concrete rectangular prisms with different aspect radios. Construc. Build. Mat. 40, 118-125. https://doi.org/10.1016/j.conbuildmat.2012.10.008
Faustino, P.; Frade, P.; Chastre, C. (2016) Lateral cyclic behaviour of RC columns confined with carbon fibres. Structures 5, 196-206. https://doi.org/10.1016/j.istruc.2015.11.004
Bouchelaghem, H.; Bezazi, A.; Scarpa, F. (2011) Compressive behaviour of concrete cylindrical FRPconfined columns subjected to a new sequential loading technique. Comp. Part B:42(7), 1987-1993. https://doi.org/10.1016/j.compositesb.2011.05.045
Li, P.; Wu, Y.-F. (2015) Stress-strain model of FRP confined concrete under cyclic loading. Composite Structures 134, 60-71. https://doi.org/10.1016/j.compstruct.2015.08.056
Mehta, P.K.; Monteiro, P.J.M. (2006) Concrete, Microstructure, Properties and Materials. Third Edition. The McGraw-Hill Companies Inc. New York, (2006).
EN 12390-2:2009. Testing hardened concrete - Part 2: Making and curing specimens for strength tests.
Lam, L.; Teng, J. (2003) Design-oriented stress-strain model for FRP-confined concrete. Construc. Build. Mat. 17 [6-7], 471-489. https://doi.org/10.1016/S0950-0618(03)00045-X
Lam, L.; Teng. J. (2003) Design-oriented stress-strain model for FRP-confined concrete in rectangular columns. J. Reinf. Plastics & Comp. 22 [13], 1149-1186. https://doi.org/10.1177/0731684403035429
Pessiki, S.; Harries, K.A.; Kestner, J.; Sause, R.; Ricles, J.M. (2001) The axial behaviour of concrete confined with fiber reinforced composite jackets. J. Compos. Constr. 5 [4], 237-245. https://doi.org/10.1061/(ASCE)1090-0268(2001)5:4(237)
Harries, K.A.; Carey, S.A. (2003) Shape and "gap" effects on the behaviour of variably confined concrete. Cem. Concr. Res. 33 [6], 881-890. https://doi.org/10.1016/S0008-8846(02)01085-2
Carey, S.A.; Harries, K.A. (2005) Axial behaviour and modeling of confined small-, medium-, and large-scale circular sections with CFRP jackets. ACI Structural Journal. American Concrete Institute. 102 [4], 596-604.
EN 12390-3:2009. Testing hardened concrete - Part 3: Compressive strength of test specimens.
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2016 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.