Influencia de la adición de fibras de carbon en las propiedades de los morteros de cal hidráulica: comparación con fibras de vidrio y basalto
DOI:
https://doi.org/10.3989/mc.2020.00120Palabras clave:
Mortero, Cal hidráulica, Refuerzo de fibras, Propiedades mecánicas, CaracterizaciónResumen
En los últimos años, se ha incrementado el uso de cal hidráulica en trabajos de conservación y restauración de edificios históricos debido a los procesos patológicos involucrados en el uso de cemento Portland. En esta investigación se determinan las propiedades de los morteros de cal hidráulica con adición de fibras de carbono para su posible uso en restauración del patrimonio arquitectónico. Se comparan los resultados obtenidos con morteros a los que se les han añadido fibras de vidrio y basalto. Los resultados muestran que las fibras afectan significativamente al comportamiento del mortero, mejorando significativamente las resistencias mecánicas. Aunque no se han encontrado diferencias relevantes en el comportamiento previo al agrietamiento, se ha demostrado que las fibras evitan una rotura frágil del mortero, mostrando un mejor comportamiento posterior al agrietamiento. Los morteros con fibras de carbono son los presentan un mejor rendimiento, aumentando la tenacidad hasta un 12080% sobre los morteros de referencia.
Descargas
Citas
Moropoulou, A.; Bakolas, A.; Moundoulas, P.; Aggelakopoulou, E.; Anagnostopoulou, S. (2013) Optimization of compatible restoration mortars for the earthquake protection of Hagia Sophia. J. Cult. Herit. 14 [3], e147-e152. https://doi.org/10.1016/j.culher.2013.01.008
Bianco, N.; Calia, A.; Denotarpietro, G.; Negro, P. (2013) Laboratory assessment of the performance of new hydraulic mortars for restoration. Procedia Chem. 8, 20-27. https://doi.org/10.1016/j.proche.2013.03.004
Arizzi, A.; Martínez- Huerga, G.; Sebastian-Pardo, E.; Cultrone, G. (2015) Mineralogical, textural and physical-mechanical study of hydraulic lime mortars cured under different moisture conditions. Mater. Construcc. 65 [318], e053. https://doi.org/10.3989/mc.2015.03514
Gullota, D.; Goidanich, S.; Tedeschi, C.; Nijland, T.G.; Toniolo, L. (2013) Commercial NHL-containing mortars for the preservation of historical architecture. Part 1: Compositional and mechanical characterisation. Constr. Build. Mat. 38, 31-42. https://doi.org/10.1016/j.conbuildmat.2012.08.029
Kozlovcev, P.; Přikryl, R. (2015) Devonian micritic limestones used in the historic production of Prague hydraulic lime ('pasta di Praga'): characterization of the raw material and experimental laboratory burning. Mater. Construcc. 65 [319], e060. https://doi.org/10.3989/mc.2015.06314
Arizzi, A.; Viles, H.; Cultrone, G. (2012) Experimental testing of the durability of lime-based mortars used for rendering historic buildings. Constr. Build. Mat. 28 [1], 807-818. https://doi.org/10.1016/j.conbuildmat.2011.10.059
Tassew, S.T.; Lubell, A.S. (2014) Mechanical properties of glass fiber reinforced ceramic concrete. Constr. Build. Mat. 51, 215-224. https://doi.org/10.1016/j.conbuildmat.2013.10.046
Kizilkanat, A.B.; Kabay, N.; Akyüncü, V.; Chowdhury, S.; Akça, A.H. (2015) Mechanical properties and fracture behavior of basalt and glass fiber reinforced concrete: An experimental study. Constr. Build. Mat. 100, 218-224. https://doi.org/10.1016/j.conbuildmat.2015.10.006
Fenu, L.; Forni, D.; Cadoni, E. (2016) Dynamic behaviour of cement mortars reinforced with glass and basalt fibres. Comp. Part B: Eng. 92, 142-150. https://doi.org/10.1016/j.compositesb.2016.02.035
Lipatov, Y.V.; Gutnikov, S.I.; Manylov, M.S.; Zhukovskaya, E.S.; Lazoryak, B.I. (2015) High alkali-resistant basalt fiber for reinforcing concrete. Mater. Des. 73, 60-66. https://doi.org/10.1016/j.matdes.2015.02.022
Kabay, N. (2014) Abrasion resistance and fracture energy of concretes with basalt fiber. Constr. Build. Mat. 50, 95-101. https://doi.org/10.1016/j.conbuildmat.2013.09.040
Graham, R.K.; Huang, B.; Shu, X.; Burdette, E.G. (2013) Laboratory evaluation of tensile strength and energy absorbing properties of cement mortar reinforced with micro-and meso-sized carbon fibers. Constr. Build. Mat. 44, 751-756. https://doi.org/10.1016/j.conbuildmat.2013.03.071
Shu, X.; Graham, R.K.; Huang, B.; Burdette, E.G. (2015) Hybrid effects of carbon fibers on mechanical properties of Portland cement mortar. Mater. Des. 65, 1222-1228. https://doi.org/10.1016/j.matdes.2014.10.015
Nguyen, H.; Carvelli, V.; Fujii, T.; Okubo, K. (2016) Cement mortar reinforced with reclaimed carbon fibres, CFRP waste or prepreg carbon waste. Constr. Build. Mat. 126, 321-331. https://doi.org/10.1016/j.conbuildmat.2016.09.044
Lucolano, F.; Liguori, B.; Colella, C. (2013) Fibre-reinforced lime-based mortars: A possible resource for ancient masonry restoration. Constr. Build. Mat. 38, 785-789. https://doi.org/10.1016/j.conbuildmat.2012.09.050
Santarelli, M.L.; Sbardella, F.; Zuena, M.; Tirillò, J.; Sarasini, F. (2014) Basalt fiber reinforced natural hydraulic lime mortars: A potential bio-based material for restoration. Mater. Des. 63, 398-406. https://doi.org/10.1016/j.matdes.2014.06.041
Arslan, M.E. (2016) Effects of basalt and glass chopped fibers addition on fracture energy and mechanical properties of ordinary concrete: CMOD measurement. Constr. Build. Mat. 114, 383-391. https://doi.org/10.1016/j.conbuildmat.2016.03.176
EN 459-1 (2015) Building lime - Part 1: Definitions, specifications and conformity criteria. European Committee for Standardization. Retrieved from https://standards. iteh.ai/catalog/standards/cen/588081bb-ff4e-4421-997c- 2d7dcab1b6ac/en-459-1-2015.
EN 196-1 (2016). Methods of testing cement - Part 1: Determination of strength. European Committee for Standardization. Retrieved from https://standards.iteh.ai/catalog/standards/cen/37b8816e-4085-4dcc-a642- a383d9bddd6c/en-196-1-2016.
Gao, J.; Wang, Z.; Zhang, T.; Zhou, L. (2017) Dispersion of carbon fibers in cement-based composites with different mixing methods. Constr. Build. Mat. 134, 220-227. https://doi.org/10.1016/j.conbuildmat.2016.12.047
EN 459-2 (2010) Building lime - Part 2: Test Methods. European Committee for Standardization. Retrieved from https://standards.iteh.ai/catalog/standards/cen/7e034aed-a672-467a-8b6c-53c5d4f79a72/en-459-2-2010.
EN 1015-3/A2 (2006) Methods of test for mortar for masonry - Part 3: Determination of consistence of fresh mortar (by flow table). Retrieved from https://standards.iteh.ai/catalog/ standards/cen/fb7a5bb4-d8e4-4c91-a7f8-a5cc646ce3e9/ en-1015-3-1999-a2-2006.
EN 1015-6/A1 (2006) Methods of test for mortar for masonry - Part 6: Determination of bulk density of fresh mortar. Retrieved from https://standards.iteh.ai/catalog/ standards/cen/529d9f7a-4b23-4747-8e12-a3185038cb1e/ en-1015-6-1998-a1-2006.
EN 1015-10/A1 (2006) Methods of test for mortar for masonry - Part 10: Determination of dry bulk density of hardened mortar. European Committee for Standardization. Retrieved from https://standards.iteh.ai/catalog/standards/cen/865ded6d-f5e0-43ba-9ba9-69da5400168a/ en-1015-10-1999-a1-2006.
EN 1015-7 (1998) Methods of test for mortar for masonry - Part 7: determination of air content of fresh mortar. Retrieved from https://standards.iteh.ai/catalog/standards/cen/3c66138f-1eb7-41a2-99c6-92ed26a7bdd1/ en-1015-7-1998.
EN 1015-11/A1 (2006) Methods of test for mortar for masonry - Part 11: Determination of flexural and compressive strength of hardened mortar. European Committee for Standardization. Retrieved from https://standards. iteh.ai/catalog/standards/cen/251c5fb4-ef60-4285-9039- be39d56242d3/en-1015-11-1999-a1-2006.
ASTM C1609/C1609M-12 (2012) Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam with Third-Point Loading), ASTM International, West Conshohocken, PA. https://doi.org/ 10.1520/C1609_C1609M-12.
Hou, L.J.; Xu, S.L.; Zhang, X.F. (2012) Toughness evaluation of ultra-high toughness cementitious composite specimens with different depths. Mag. Concr. Res. 64 [12], 1079-1088. https://doi.org/10.1680/macr.11.00186
Li, Y.; Li, Y.; Shi, T.; Li, J. (2015) Experimental study on mechanical properties and fracture toughness of magnesium phosphate cement. Constr. Build. Mat. 96, 346-352. https://doi.org/10.1016/j.conbuildmat.2015.08.012
UNE 83508 (2004) Concrete with fibers. Determination of the index of tenacity in compression. Spanish Association for Standardization and Certification. Retrieved from https://www.aenor.com/normas-y-libros/ buscador-de-normas/une/?c=N0032568.
García-Cuadrado, J.; Rodríguez, A.; Cuesta, I. I.; Calderón, V.; Gutiérrez-González, S. (2017) Study and analysis by means of surface response to fracture behavior in lime-cement mortars fabricated with steelmaking slags. Constr. Build. Mat. 138, 204-213. https://doi.org/10.1016/j.conbuildmat.2017.01.122
Jiang, C.; Fan, K.; Wu, F.; Chen, D. (2014) Experimental study on the mechanical properties and microstructure of chopped basalt fibre reinforced concrete. Mater. Des. 58, 187-193. https://doi.org/10.1016/j.matdes.2014.01.056
Khushnood, R.A.; Muhammad, S.; Ahmad, S.; Tulliani, J.M.; Qamar, M.U.; Ullah, Q. Maqsom, A. (2018) Theoretical and experimental analysis of multifunctional high performance cement mortar matrices reinforced with varying lengths of carbon fibers. Mater. Construcc. 68 [332], e172. https://doi.org/10.3989/mc.2018.09617
Pereira-de-Oliveira, L.A.; Castro-Gomes, J.P.; Nepomuceno, M.C. (2012) Effect of acrylic fibres geometry on physical, mechanical and durability properties of cement mortars. Constr. Build. Mat. 27 [1], 189-196. https://doi.org/10.1016/j.conbuildmat.2011.07.061
Bustos-García, A.; Moreno-Fernández, E.; Zavalis, R.; Valivonis, J. (2019) Diagonal compression tests on masonry wallets coated with mortars reinforced with glass fibers. Mater. Struct. 52 [3], 60. https://doi.org/10.1617/s11527-019-1360-y
Asprone, D.; Cadoni, E.; Lucolano, F.; Prota, A. (2014) Analysis of the strain-rate behavior of a basalt fiber reinforced natural hydraulic mortar. Cem. Concr. Compos. 53, 52-58. https://doi.org/10.1016/j.cemconcomp.2014.06.009
Izaguirre, A.; Lanas, J.; Alvarez, J.I. (2011) Effect of a polypropylene fibre on the behaviour of aerial lime-based mortars. Constr. Build. Mat. 25 [2], 992-1000. https://doi.org/10.1016/j.conbuildmat.2010.06.080
Serrano, R.; Cobo, A.; Prieto, M.I.; de las Nieves González, M. (2016) Analysis of fire resistance of concrete with polypropylene or steel fibers. Constr. Build. Mat. 122, 302-309. https://doi.org/10.1016/j.conbuildmat.2016.06.055
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.