Ductility in a new low nickel stainless steel for reinforced concrete


  • A. Cobo Universidad Politécnica de Madrid
  • D. M. Bastidas CENIM-CSIC
  • M. N. González Universidad Politécnica de Madrid
  • E. Medina Universidad Politécnica de Madrid
  • J. M. Bastidas CENIM-CSIC




low nickel steel, ductility, reinforcement, equivalent steel, reinforced concrete structures


This paper discusses the stress-strain curves for a new low nickel stainless steel, a conventional AISI 304 stainless steel and a carbon steel commonly used in reinforced concrete structures. Ductility was studied in terms of ultimate tensile strength (fmax), elastic limit (fy) and total elongation at maximum force [ultimate strain; uniform elongation] (εmax). The three materials were assessed with internationally accepted criteria, such as plastic rotational capacity, necking region and the toughness index (total energy absorbed at uniform elongation). The findings were compared to the properties of three types of conventional reinforcing steel: 500SD, 500N and 500H (EC-2).


Download data is not yet available.


(1) Page, C. L., Treadaway, K. W. J.: “Aspects of the electrochemistry of steel in concrete”, Nature, nº 297 (1982), pp. 109-115. http://dx.doi.org/10.1038/297109a0

(2) Flaga, K.: “Advances in materials applied in civil engineering”, J. Mater. Process. Tech., nº 106 (2000), pp. 173-183.

(3) Committee Euro-International du Béton, Coating Protection for Reinforcement. CEB State of the Art Report, Thomas Telford Services Ltd, London (1995).

(4) Barris, C., Torres, L. I., Baena, M., Miás, C.: “Vigas de hormigón armado con barras de materiales compuestos”. IV Congreso de la Asociación Científico-Técnica de Hormigón Estructural, Valencia, Spain (2008).

(5) Macias, A., Andrade, C.: “Corrosion rate of galvanized steel reinforcements in alkaline solutions. Part 2: SEM study and identification of corrosion products”, Brit. Corros. J., nº 22 (1987), pp. 119-129.

(6) Sánchez, M., Alonso, M. C., Cecílio, P., Montemor, M. F., Andrade, C.: “Electrochemical and analytical assessment of galvanized steel reinforcement pre-treatment with Ce and La salts under alkaline media”, Cement Concrete Comp., nº 28 (2006), pp. 256-266.

(7) Trabelsi, W., Cecílio, P., Ferreira, M. G. S., Montemor, M. F.: “Electrochemical assessment of the self-healing properties of Ce-doped silane solutions for the pre-treatment of galvanized steel substrates”, Prog. Org. Coat., nº 54 (2005), pp. 276-284. http://dx.doi.org/10.1016/j.porgcoat.2005.07.006

(8) García-Heras, M., Jiménez-Morales, A., Casal, B., Galván, J. C., Radzki, S., Villegas, M. A.: “Preparation and electrochemical study of cerium–silica sol–gel thin films”, J. Alloys Comp., nº 380 (2004), pp. 219-224.

(9) Mora, N., Cano, E., Polo, J. L., Puente, J. M., Bastidas, J. M.: “Corrosion protection properties of cerium layers formed on tinplate”, Corros. Sci., nº 46 (2004), pp. 563-578. http://dx.doi.org/10.1016/S0010-938X(03)00171-9

(10) Montoya, R., Aperador, W., Bastidas, D. M.: “Influence of conductivity on cathodic protection of reinforced alkali-activated slag mortar using the finite element method”, Corros. Sci., nº 51 (2009), pp. 2857–2862. http://dx.doi.org/10.1016/j.corsci.2009.08.020

(11) Miller, J. B.: European Patent Application, No. 90108563.9 (1990).

(12) González, J. A., Cobo, A., González, M. N., Otero, E.: “On the effectiveness of realkalization as a rehabilitation method for corroded reinforced concrete structures”, Mater. Corros., nº 51 (2000), pp. 97-103.

(13) Castellote, M., Llorente, I., Andrade, C., Turrillas, X., Alonso, C., Campo, J.: “In-situ monitoring the realkalization process by neutron diffraction: Electroosmotic flux and portlandite formation”, Cement Concrete Res., nº 36 (2006), pp. 791-800. http://dx.doi.org/10.1016/j.cemconres.2005.11.014

(14) Miranda, J. M., González, J. A., Cobo, A., Otero, E.: “Several questions about electrochemical rehabilitation methods for reinforced concrete structures”, Corros. Sci., nº 48 (2006), pp. 2172-2188. http://dx.doi.org/10.1016/j.corsci.2005.08.014

(15) Uy, B.: “Stability and ductility of high performance steel sections with concrete infill”, J. Constr. Steel Res., nº 64 (2008), pp. 748-754.

(16) Pérez Quiroz, J. T., Terán, J., Herrera, M. J., Martínez, M., Genescá, J.: “Assessment of stainless steel reinforcement for concrete structures rehabilitation”, J. Constr. Steel Res., nº 64 (2008), pp. 1317-1324.

(17) Baddoo, N. R.: “Stainless steel in construction: A review of research, applications, challenges and opportunities”, J. Constr. Steel Res., nº 64 (2008), pp. 1199-1206.

(18) Castro, H., Rodríguez, C., Belzunce, F. J., Canteli. A. F.: “Mechanical properties and corrosion behaviour of stainless steel reinforcing bars”, J. Mater. Process. Tech., nº 143-144 (2003), pp. 134-137.

(19) Cramer, S. D., Covino, B. S., Bullard, S. J., Holcomb, G. R., Russell, J. H., Nelson, F. J., Laylor, H. M., Soltesz, S. M.: “Corrosion prevention and remediation strategies for reinforced concrete coastal bridges”, Cement Concrete Comp., nº 24 (2002), pp. 101-117.

(20) UNE 36-067-94 Standard, Alambres corrugados de acero inoxidable austenítico para armaduras de hormigón armado, Asociación Española de Normalización y Certificación (1994).

(21) ASTM A955/A955M-04 Standard, Deformed and plain stainless steel bars for concrete reinforcement, ASTM, USA (2004).

(22) BS 6744 Standard, Stainless steel bars for the reinforcement of and use in concrete. Requirements and test methods, BS, UK (2001).

(23) Cosenza, E., Greco, C., Manfredi, G.: “An equivalent steel index in the assessment of the ductility performances of the reinforcement”, Bulletin d’Information, nº 242, Ductility of Reinforced Concrete Structures, Committee Euro-International du Béton, Lausanne (1998).

(24) Creazza, G., Russo, S.: “A new proposal for defining the ductility of concrete reinforcement steels by means of a single parameter”, Bulletin d’Information nº 242 – Ductility of Reinforced Concrete Structures, Committee Euro-International du Béton, Lausanne (1998).

(25) Ortega, H.: Estudio experimental de la influencia del tipo de acero en la capacidad de redistribución en losas de hormigón armado, PhD Thesis, Polytechnic University of Madrid, Madrid, (1998).

(26) Comisión Permanente del Hormigón, Instrucción de Hormigón Estructural EHE-08, Ministerio de Fomento, Madrid (2008).

(27) Doñate, A.: Aceros con características especiales de ductilidad para hormigón armado, Calidad Siderúrgica, AENOR, Madrid (2000).

(28) CEB-FIP Model Code 90, Reinforcing steel, Commité Euro-International du Béton, Federation International of Prestressed, Bulletin d’Information No. 213/214, pp. 71-74, Thomas Telford, Services Ltd, London (1993).

(29) EN 1992-1-1:2004 Eurocode 2: Design of concrete structures, Part 1-1: General rules and rules for buildings, Lausanne (2004).

(30) Ductility Working Group from the Concrete International European Committee, Lausanne, (1998).

(31) Fabbrocino, G., Manfredi, G., Cosenza, E.: “Ductility of composite beams under negative bending: an equivalence index for reinforcing steel classification”, J. Constr. Steel Res., nº 57 (2001), pp. 185-202.

(32) Moreno, E., Cobo, A., Fernández Cánovas, M.: “Ductility of reinforcing steel with different degrees of corrosion and the equivalent steel criterion”, Mater. Construcc., vol. 57, nº 286 (2007), pp. 5-18.




How to Cite

Cobo, A., Bastidas, D. M., González, M. N., Medina, E., & Bastidas, J. M. (2011). Ductility in a new low nickel stainless steel for reinforced concrete. Materiales De Construcción, 61(304), 613–620. https://doi.org/10.3989/mc.2011.57210



Technical Note