Analysis of the bearing capacity of unbound granular mixtures with rubber particles from scrap tyres when used as sub-ballast

Authors

  • C. Hidalgo-Signes Department of Geotechnical and Geological Engineering, Universitat Politècnica de València (UPV)
  • P. Martínez-Fernández Department of Transport Engineering and Infrastructure, Universitat Politècnica de València (UPV)
  • J. Garzón-Roca Department of Geotechnical and Geological Engineering, Universitat Politècnica de València (UPV)
  • R. Insa-Franco Department of Transport Engineering and Infrastructure, Universitat Politècnica de València (UPV)

DOI:

https://doi.org/10.3989/mc.2016.11515

Keywords:

Waste treatment, Aggregate, Modulus of Elasticity, Cycles, Mechanical properties

Abstract


Scrap tyres are a problematic waste material. As a method for recycling large quantities of rubber from scrap tyres, this paper analyses the use of unbound granular mixtures with varying percentages of rubber particles as sub-ballast in railway lines. Bearing capacity for such mixtures is studied in laboratory and field tests using static and dynamic plate load tests, as well as cyclic triaxial tests. It is found that adding rubber increases permanent and resilient strain and that none of the mixtures suffer plastic creep after 2.5 million cycles. Considering the usual bearing capacity requirements, the optimum rubber content is 2.5% (by weight). This percentage increases resistance to degradation while ensuring sufficient bearing capacity.

Downloads

Download data is not yet available.

References

Humphrey, D.N.; Blumenthal, M. (2010) The use of tire-derived aggregate in road construction applications. Green Streets Highway 2010, 299–313, American Society of Civil Engineers. https://doi.org/10.1061/41148(389)25

Wolfe, S.L.; Humphrey, D.N.; Wetzel, E.A. (2004) Development of tire shred underlayment to reduce groundborne vibration from LRT track. Geotech SP, 750–759. https://doi.org/10.1061/40744(154)62

Salgado, R.; Yoon, S.; Siddiki, N.Z. (2003) Construction of tire shreds test embankment. Publication FHWA/IN/JTRP-2002/35. Joint Transportation Research Program, Indiana Department of Transportation and Purdue University, West Lafayette, IN. https://doi.org/10.5703/1288284313165

Yoon, S.; Prezzi, M.; Siddiki, N.Z.; Kim, B. (2006) Construction of a test embankment using a sand-tire shred mixture as fill material. Waste Manage. 26 [9], 1033–1044. https://doi.org/10.1016/j.wasman.2005.10.009 PMid:16343890

Buonanno, A.; Mele, R. (2000) The use of bituminous mix sub-ballast in the Italian State Railways. 2nd Eurasphalt & Eurobitume Congress, Barcelona, 20–22 September 2000.

Sol, M.; Thom, N.H.; Moreno, F.; Rubio, M.C.; Airey, G.D. (2015) A study into the use of crumb rubber in railway ballast. Constr Build Mater. 75, 19–24. https://doi.org/10.1016/j.conbuildmat.2014.10.045

Hidalgo, C.; Martínez, P; Medel, E.; Insa, R. (2015) Characterisation of an unbound granular mixture with waste tyre rubber for subballast layers. Mater Struct. 45 [12], 3847–3861. https://doi.org/10.1617/s11527-014-0443-z

PF-7 (2006) Pliego de Prescripciones Técnicas Generales de Materiales Ferroviarios PF-7: Subbalasto (General Technical Specifications for Railway Materials PF-7: Sub-ballast). Spanish Ministry of Public Works and Transport, Madrid. (In Spanish).

UIC Code 719R (2008) Earthworks and Track-Bed Layers for Railway Lines. International Union of Railways, Paris.

Panadero, C.; Sanz, J.L. (2010) Análisis de las propiedades del sub-balasto: Contradicciones y procesos que afectan a su función (Analysis of sub-ballast properties: Contradictions and processes that affect their performance). Revista Ingeopres 196, 14–21. (In Spanish).

BS 1377-9 (1990) Methods for test for soils for civil engineering purposes. In-situ tests: determination of the vertical deformation and strength characteristics of soil by the plate loading. British Standards Institution, London.

Santiago, E.; García, J.L.; González, P. (2010) Comparación de diferentes métodos de control de compactación del subbalasto (Comparison of different sub-ballast compaction control methods). CEDEX Geotechnical Laboratory, Madrid. (In Spanish).

Seyman, E. (2003) Laboratory evaluation of in-situ tests as potential quality control/quality assurance tools. MSc Thesis, Lousiana State University, Baton Rouge, LA.

Tompai, Z. (2008) Conversion between static and dynamic load bearing capacity moduli and introduction of dynamic target values. Period Polytech-Civ. 52 [2], 97–102. https://doi.org/10.3311/pp.ci.2008-2.06

ASTM D75/D75M-09 (2009) Standard practice for sampling aggregates. American Society for Testing and Materials (ASTM), West Conshohocken, PA.

ASTM D1557 (2012) Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft3 (2,700 kN-m/m3)) American Society for Testing and Materials (ASTM), West Conshohocken, PA.

Melis, M. (2006). Terraplenes y Balasto en Alta Velocidad Ferroviaria (Embankment and ballast in high speed railways). Revista de Obras Públicas 3464, 7–36. (In Spanish).

Werkmeister, S.; Dawson, A.R.; Wellner, F. (2005) Permanent Deformation Behaviour of Granular Materials. Road Mater Pavement. 6 [1], 31–51. https://doi.org/10.1080/14680629.2005.9689998

Cerni, G.; Cardone, F.; Virgili, A.; Camilli, S. (2012) Characterisation of permanent deformation behaviour of unbound granular materials under repeated triaxial loading. Constr Build Mater. 28 [1], 79–87. https://doi.org/10.1016/j.conbuildmat.2011.07.066

UNE-EN 13286-7 (2008) Unbound and hydraulically bound mixtures – Part 7: Cyclic load triaxial test for unbound mixtures. Spanish Association for Normalization and Certification (AENOR), Madrid.

ASTM E2835 (2011) Standard Test Method for Measuring Deflections using a Portable Impulse Plate Load Test Device. American Society for Testing and Materials (ASTM), West Conshohocken, PA.

UNE 103807-2 (2008) Plate loading test of soils by means of dynamic plate. Part 2: Rigid plate, diameter 2r=300 mm, Method 2. Spanish Association for Normalization and Certification (AENOR), Madrid.

Speir, R.H.; Witczak, M.W. (1996) Use of shredded rubber in unbound granular flexible pavement layers. Transp Res Record. 1547, 96–106. https://doi.org/10.3141/1547-14

Santamarina, J.C.; Klein, K.A.; Fam, M.A. (2001) Soils and Waves. Particulate Materials. Behavior, Characterization and Process Monitoring. John Wiley & Sons Ltd., Baffins Lane, Chichester.

Pe-a, M. (2003) Tramos de ensayo de vía en placa en la línea del corredor del Mediterráneo para su explotación a alta velocidad (Slab track test sites in the Mediterranean Corridor for high speed use). Revista de Obras Públicas 3431, 57–68. (In Spanish).

Cecich, V.; Gonzales, L.; Hoisaeter, A.; Williams, J.; Reddy, K. (1996) Use of shredded tires as lightweight backfill material for retaining structures. Waste Manage Res. 14, 433–451. https://doi.org/10.1177/0734242X9601400503

Weingart, W. (1993) Einbaukontrolle mit dem Leichten Fallgewichtsgerät auf Tragschichten ohne Bindemittel – Arbeitsweise des Prüfgerätes, Erfahrungen bei seinem Einsatz (Control of unbound granular materials layers by the Light Drop-Weight Tester – Testing and experience of its use). Mineralstofftagung - Conference on Minerals, Nuremberg, 1993. (In German).

NGT 39 (1997) Richtlinie für die Anwendung des Leichten Fallgewichtsgerätes im Eisenbahnbau (Application of Light Drop-Weight Tester in Railways). German Railways. (In German).

Published

2016-12-30

How to Cite

Hidalgo-Signes, C., Martínez-Fernández, P., Garzón-Roca, J., & Insa-Franco, R. (2016). Analysis of the bearing capacity of unbound granular mixtures with rubber particles from scrap tyres when used as sub-ballast. Materiales De Construcción, 66(324), e105. https://doi.org/10.3989/mc.2016.11515

Issue

Section

Research Articles

Most read articles by the same author(s)