Synthesis of nanocomposite coating based on TiO2/ZnAl layer double hydroxides

Authors

DOI:

https://doi.org/10.3989/mc.2017.07215

Keywords:

Composite, Durability, Characterization, Microstructure, Particles size distribution

Abstract


The aim of this investigation was the synthesis of nanocomposite coatings based on Zn-Al layered double hydroxides (Zn-Al LDH) and TiO2. The Zn-Al LDH material, which acted as the catalyst support of the active TiO2 component (in the content of 3 and 10 wt. %), was synthesized by a low super saturation co-precipitation method. The interaction between the Zn-Al LDH and the active TiO2 component was accomplished by using vacuum evaporation prior to the mechanical activation and only by mechanical activation. The final suspension based on Zn-Al LDH and 10wt. % TiO2, impregnated only by mechanical activation, showed the optimal characteristics from the aspect of particle size distribution and XRD analysis. These properties had a positive effect on the functional properties of the coatings (photocatalytic activity and self-cleaning efficiency) after the water rinsing procedure.

Downloads

Download data is not yet available.

References

Dai, K.; Chen, H.; Peng, T.; Ke, D.; Yi, H. (2007) Photocatalytic degradation of methyl orange in aqueous suspension of mesoporous titania nanoparticles. Chemosphere 69 [9], 1361-1367. https://doi.org/10.1016/j.chemosphere.2007.05.021 PMid:17588640

Zahang, W.; Zou, L.; Wang, L. (2009) Photocatalytic TiO2/ adsorbent nanocomposites prepared via wet chemical impregnation for wastewater treatment: A review. Appl. Catal. A General 371 [1-2], 1-9. https://doi.org/10.1016/j.apcata.2009.09.038

Ramirez, A.M.; Demeestere, K.; De Belie, N.; Mantyla, T.; Levanen, E. (2010) Titanium dioxide coated cmentous materials for air purifying purposes: preparation, characterization and toluene removal poteential. Bulid. Environ. 45 [4], 832-838.

Sugali, H.N.; Kakati, B.K.; Verema, A. (2009) Accelerated solar photocatalytic degradation of phenol using titanium dioxide, J. Environ. Res. Develop. 3 [3] 763-771.

Jiang, W.; Mashayekhi, H.; Xing, B. (2009) Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environ. Pollut. 157 [5], 1619-1625. https://doi.org/10.1016/j.envpol.2008.12.025 PMid:19185963

Yahiro, H.; Miyamoto, T.; Watanabe, N.; Yamaura, H. (2007) Photocatalytic partial oxidation of _-metylstyreneover TiO2 supported on zeolites, Catal Today. 120 [2], 158-162.

Kasibi, M.; Zemzemi, A.; Rachid, B. (2003) Photocatalytic degradation of substituted phenols over UV irradiated TiO2, J. Photochem. Photobio. A: Chem., 159 [1], 61-70. https://doi.org/10.1016/S1010-6030(03)00114-X

Kaegi, R.; Ulrich, A.; Sinnet, B.; Vonbank, R.; Wichser, A.; Zuleeg, S.; Simmler H.; Brunner, S.; Vonmont, H.; Burkhardt, M.; Boller, M. (2008) Synthetic TiO2 nanoparticles emission from exterior facades into the aquatic environment. Environ. Pollut. 156 [2], 233-239. https://doi.org/10.1016/j.envpol.2008.08.004 PMid:18824285

Reijndeser, L. (2009) The release of the TiO2 and SiO2 nanoparticles from nanocomposites. Polym. Degrad. Stab. 94, 873-876. https://doi.org/10.1016/j.polymdegradstab.2009.02.005

Tennakone, K.; Tilakratne, C.T.K.; Kottagoda, I.R.M. (1995) Photocatalytic degradation of organic contaminants in water with TiO2 supported on polythene films, J. Photochem. Photobio. A: Chem. 87 [2], 177-179. https://doi.org/10.1016/1010-6030(94)03980-9

Yu, Y. (2004) Preparation of nanocristalline TiO2-coated coal fly ash and effect of iron oxides in coal fly ash on photocatalytic activity. Powder. Technol. 146 [1-2], 154-159. https://doi.org/10.1016/j.powtec.2004.06.006

Zainudin, N.F.; Abdullah, A.Z.; Mohamed, A. R. (2008) Development of supported TiO2 photocatalyst based adsorbent for photocatalytic degradation of phenol, in Proceedings of the International Conference on Environment (ICENV '08), Penang, Malaysia.

Xagas, A.P.; Androulaki, E.; Hisika, A.; Falaras, P. (1999) Preparation, fractal surface morphology and photocatalytic properties of TiO2 films, Thin Solid Films 357 [2], 173-178.

Chrubar, N.; Gerda, V.; Megantari, O.; Misucik, M.; Omastova, M.; Heister, K.; Man, P.; Fraissard, J. (2013) Applications versus properties of Mg-Al layered double hydroxides provided by their syntheses methods: Alkoxide and alkoxide-free sol-gel syntheses and hydrothermal precipitation, Chem. Eng. J. 234, 284-299.

Seftel, E.M.; Popovici, E.; Mertnes, M.; De Witte, K.; Van Tendeloo, G.; Cool, P.; Vansant, E.F. (2008) Zn- Al layered doublehydroxides: synthesis, characterization and photocatalytic application, Micropor. Mesopor. Mat. 113 [1-3], 296-304. https://doi.org/10.1016/j.micromeso.2007.11.029

Tzompantzi, F.; Mantilla, A.; Ba-uelos, F.; Fernández, J.L.; Gômez, R. (2011) Improved photocatalytic degradation of phenolic compounds with ZnAl mixed oxides obtained from LDH materials, Top. Catal. 54 [1-4], 257-263.

Vulic, T.; Rudic, O.; Vucetic, S.; Lazar, D.; Ranogajec, J. (2015) Photocatalytic activity and stability of TiO2_ZnAl layered double hydroxide based coatings on mortar substrates, Cement Concrete Comp. 58, 50-58.

Rudic, O.; Ranogajec, J.; Vulic, T.; Vucetic, S.; Cjepa, D.; Lazar, D. (2014) Photo-induced properties of TiO2/ZnAl layered double hydroxide coating onto porous mineral substrates, Ceram. Int. 40 [7] Part A, 9445-9455.

Vulic,T.; Hadnadjev-Kostic, M.; Rudic, O.; Radeka, M.; Marinkovic- Neducin, R.; Ranogajec, J. (2013) Improvement of cement-based mortars by application of photocatalytic active Ti-Zn-Al nanocomposites, Cement Concrete Comp. 36, 121-127.

Ranogajec, J.; Radeka, M. (2013) Self-cleaning surface of clay roofing tiles, in: W.A.Daoud (Ed.), Self-Cleaning Materials and Surfaces: A Nanotechnology Approach, Wiley-VCHVerlan 35 GmbH, Weinheim pp. 89-128. https://doi.org/10.1002/9781118652336.ch4

Vulic, T. (2008) Clays as catalysts, Zaduzbina Andrejevic, Beograd.

Zhang, F.; Zhao, J.; Zang, L.; Shen, T.; Hidaka, H., Pelizzetti, E.; Serpone, N. (1997) Photoassisted degradation of dye pollutants in aqueous TiO2, dispersions under irradiation by visible light, J. Mol. Catal.A-Chem.120 [1-3], 173-178. https://doi.org/10.1016/S1381-1169(96)00405-0

Hadnadjev-Kostic, M.; Vulic, T.; Ranogajec, J.; Marinkovic- Neducin, R.; Radosavlajevic-Mihajlovic, A. (2013) Termal and photocatalytic behavior of TiO2/LDH nanocomposites, J. Term. Anal. Calorim. 111 [2], 1155-1162. https://doi.org/10.1007/s10973-012-2226-5

Saravanan, R.; Thirumal, E.; Gupta, V.K.; Narayanan, N.; Stephen, A. (2013) The photocatalytic activity of ZnO prepared by simple thermal decomposition method at various temperatures J. Mol. Liq. 177, 294-401. https://doi.org/10.1016/j.molliq.2012.10.018

Vuli_, T.; Hadna_ev-Kosti_, M.; Marinkovi_-Nedu_in, R.; Ranogajec, J. (2011) Study of Novel Mesoporous Photocatalysts Based on TiO2/Zn-Al Layered Double Hydroxides, Heron press Ltd. Eds. K. Hadjiivanov, V.Valtchev, S. Mintova, G. Vayssilov, Topics in Chemistry and Material Science, 6, 2011, pp. 182-192. ISSN 1314-0795.

Chong, M.N.; Vimonses, V.; Lei, S.; Jin, B.; Chow, C.; Saint, C. (2009) Synthesis and characterization of novel titania impregnated caolinite nano-photocatalyst. Micropor. Mesopor. Mat. 117, 233-242.

Reli, M.; Koci, K.; Matéjka, V.; Kovár, P.; Obalová, L. (2012) Effect of calcination temperature and calcination time on the kaolinite/TiO2 composite for photocatalytic reduction of CO2. Geo Science Engeneering LVIII [4], 10-22.

Published

2017-03-30

How to Cite

Jovanov, V., Rudic, O., Ranogajec, J., & Fidanchevska, E. (2017). Synthesis of nanocomposite coating based on TiO2/ZnAl layer double hydroxides. Materiales De Construcción, 67(325), e112. https://doi.org/10.3989/mc.2017.07215

Issue

Section

Research Articles