Use of fly ash and phosphogypsum for the synthesis of belite-sulfoaluminate clinker
DOI:
https://doi.org/10.3989/mc.2019.11617Keywords:
Clinker, Microstructure, Fly ash, Gypsum, Calcium sulphoaluminateAbstract
Fly ash and phosphogypsum were used as Naturally Occurring Radioactive Materials (NORM) by-products for the synthesis of belite-sulfoaluminate clinkers. The influence of raw mixture composition and firing temperature was investigated. Clinkers and cements were examined by X-ray powder diffraction and scanning electron microscopy with energy dispersive X-ray spectroscopy. The compressive strength of the cements was determined after 28 days. Clinker phases identified included ye’elimite, ß-phase of belite, ternesite and gehlenite, while the main hydration product of the cement pastes was ettringite. The results showed that belite-sulfoaluminate cements can be fabricated with a compressive strength of 45.9 N/mm2 by firing the raw mixture (70 wt.% marl, 10 wt.% bauxite and 20 wt.% phosphogypsum) at a temperature of 1320°C/1h.
Downloads
References
Glasser, F.P.; Zhang, L. (2001) High-performance cement matrices based on calcium sulfoaluminate-belite compositions. Cem. Concr. Res. 31, 1881–1886. https://doi.org/10.1016/S0008-8846(01)00649-4
Cuberos, A.J.M; De La Torre, A.G.; Alverez-Pinazo, G.; Martin-Sede-o, M.C.; Schollbach, K.; Pollman, H.; Aranda, M.A.G. (2010) Active Iron-Rich Belite Sulfoaluminate Cements: Clinkering and Hydration. Environ. Sci. Technol. 44, 6855–6862. https://doi.org/10.1021/es101785n PMid:20701316
Chen, I.A.; Juenger, M.C.G. (2011) Synthesis and hydration of calcium sulfoaluminate-belite cements with varied phase composition. J. Mater. Sci. 46, 2568–2577. https://doi.org/10.1007/s10853-010-5109-9
Palou, M.; Majling, J.; Doval, M.; Kozankova, J.; Mojumdar, S.C. (2005) Formation and Stability of Crystallohydrates in the Non-equilibrium System During Hydration of SAB Cements. Ceramics-Silicáty 49 [4], 230–236.
Striga?, J.; Palou, M.T.; Kri?tin, J.; Majling, J. (2000) Morphology and Chemical Composition of Minerals Inside the Phase Assemblage C-C2S-C4A3S-C4AF-CS Relevant to Sulphoaluminate Belite Cements. Ceramics- Silicáty 44 [1], 26–34.
Roy, D.M.; Silsbee, M.R.; Xie, Z. (1999) Influences of Surplus SO3 in FBC Ash on Formation of Belite-Rich Sulfoaluminate Clinkers, International Ash Utilization Symposium, Center for Applied Energy Research, University of Kentucky, paper#30.
Shen, Y.; Qian, J.; Huang, Y.; Yang, D. (2015) Synthesis of belite sulfoaluminate-ternesite cements with phosphogypsum. Cement Concr. Compos. 63, 67–75. https://doi.org/10.1016/j.cemconcomp.2015.09.003
Ukrainczyk, N.; Frankovi? Mihelj, N.; ?ipu?i?, J. (2013) Calcium Sulfoaliminate Eco-Cement from Industrial Waste. Chem. Biochem. Eng.Q. 27 [1], 83–93. http://hrcak. srce.hr/99441.
El-Alfi, E.A.; Gado, R.A. (2016) Preparation of calcium sulfoaluminate-belite cement from marble sludge waste. Constr. Build. Mater. 113, 764–772. https://doi.org/10.1016/j.conbuildmat.2016.03.103
Rungchet, A.; Chindraprasirt, P.; Wansom, S.; Pimraksa, K. (2016) Hydrothermal synthesis of calcium sulfoaluminate-belite cement from industrial waste materials. J. Clean. Prod. 115, 273–283. https://doi.org/10.1016/j.jclepro.2015.12.068
Wang, W.; Wang, X.; Zhu, J.; Wang, P.; Ma, C. (2013) Experimental Investigation and Modeling of Sulfoaluminate Cement Preparation Using Desulfurization Gypsum and Red Mud. Ind. Eng. Chem. Res. 52, 1261– 1266. https://doi.org/10.1021/ie301364c
Jewell, R.B.; Rathbone, R.F.; Duvallet, T.Y.; Robi, T.L.; Mahboub, K.C. (2015) Fabrication and Testing of Low- Energy Calcium Sulfoaluminate-Belite Cements that Utilize Circulating Fluidized Bed Combustion By-Products. Coal Combustion and Gasification Products Journal. 7, 9–18. https://doi.org/10.4177/CCGP-D-15-00001.1
Arjunan, P.; Silsbee, R.M.; Roy, D.M. (1999) Sulfoaluminate-belite cement from low-calcium fly ash and sulfur-rich and other industrial by-products. Cem. Concr. Res. 29, 1305–1311. https://doi.org/10.1016/S0008-8846(99)00072-1
Ma, B.; Li, X.; Mao, Y.; Shen, X. (2013) Synthesis and characterization of high belite sulfoaluminate cement through rich alumina fly ash and desulfurization gypsum. Ceramics – Silikáty. 57 [1], 7–13.
Gallardo, M.; Almanza, J.M.; Cortés, D.A.; Escobedo, J.C.; Escalante-García, J.I. (2014) Synthesis and mechanical properties of a calcium sulphoaluminate cement made of industrial wastes. Mater. Construc. 64 [315], 1–8. https://doi.org/10.3989/mc.2014.04513
Ren, C.; Wang, W.; Li, G. (2017) Preparation of high-performance cementitious materials from industrial solid waste. Constr. Build. Mater. 152, 39–47. https://doi.org/10.1016/j.conbuildmat.2017.06.124
Álvarez-Pinazo, G.; Cuesta, A.; García-Maté, M.; Santacruz, I.; Losilla, E.R.; Dela Torre, A.G.; León- Reina, L.; Aranda, M.A.G. (2012) Rietveld quantitative phase analysis of yeelimite-containing cements. Cem. Concr. Res. 42 [7], 960–971. https://doi.org/10.1016/j.cemconres.2012.03.018
Martín-Sede-o, M.C.; Cuberos, A.J.M.; De la Torre, Á.G.; Álvarez-Pinazo, G.; Ordónez, L.M.; Gateshki, M.; Aranda, M.A.G. (2010) Aluminum-rich belite sulfoaluminate cements: Clinkering and early age hydration. Cem. Concr. Res. 40, 359–369. https://doi.org/10.1016/j.cemconres.2009.11.003
Beretka, J.; de Vito, B.; Santoro, L.; Sherman, N.; Valenti, G.L. (1993) Utilisation of industrial wastes and by-products for the synthesis of special cements. Resour. Conserv. Recy. 9, 179–190. https://doi.org/10.1016/0921-3449(93)90002-W
Bullerjahn, F.; Schmitt, D.; Haha, M.B. (2014) Effect of raw mix design and clinkering process on the formation and mineralogical composition of (ternesite) belite calcium sulphoaluminate ferrite clinker. Cem. Concr. Res. 59, 87–95. https://doi.org/10.1016/j.cemconres.2014.02.004
Bullerjahn, F.; Zajac, M.; Ben Haha, M. (2014) CSA raw mix design: effect on clinker formation and reactivity. Mater. Struct. 48 [12], 3895–3911. https://doi.org/10.1617/s11527-014-0451-z
Hanein, T.; Galanb, I.; Glasser, F.P.; Skalamprinos, S.; Elhoweris, A.; Imbabi, M.S.; Bannerman, M.N. (2017) Stability of ternesite and the production at scale of ternesite-based clinkers. Cem. Concr. Res. 98, 91–100. https://doi.org/10.1016/j.cemconres.2017.04.010
Kasselouri, V.; Tsakiridis, P. (1995) A study on the hydration products of a non-expensive sulfoaluminate cement. Cem. Concr. Res. 25 [8], 1726–1736. https://doi.org/10.1016/0008-8846(95)00168-9
Chen, I.A.; Juenger, M.C.G. (2012) Incorporation of coal combustion residuals into calcium sulfoaluminate-belite cement clinkers. Cement Concr. Compos. 34, 893–902. https://doi.org/10.1016/j.cemconcomp.2012.04.006
lvarez-Pinazo, G.; Santacruz, I.; Leon-Reina, L.; Aranda, M.A.G.; De la Torre, A.G. (2013) Hydration Reactions and Mechanical Strength Developments of IronRich Sulfobelite Eco-cements. Ind. Eng. Chem. Res. 52, 16606– 16614.
J. Labrincha, F. Puertas, W. Schroeyers, K. Kovler, Y. Pontikes, C. Nuccetelli, P. Krivenko, O. Kovalchuk, O. Petropavlovsky, M. Komljenovic, E. Fidanchevska, R. Wiegers, E. Volceanov, E. Gunay, M.A. Sanjuan, V. Ducman, B. Angjusheva, D. Bajare, T. Kovacs, G. Bator, S. Schreurs, J. Aguiar, J.L. Povis (2017) From NORM by-products to building materials, In Schroeyers, W. (ed) Naturally Occurring Radioactive Materials in Construction, Integrating Radiation Protection in Reuse (COST Action Tu1301 NORM4BUILDING).Woodhead Publishing Series in Civil and Structural Engineering, Elsevir.
Saadaoui, E.; Ghazel, N.; Romdhane, C.B.; Massoudi, N. (2017) Phosphogypsum: potential uses and problems-a review, International Journal of Environmental studies, 1–10. https://doi.org/10.1080/00207233.2017.1330582
EN 196-2:2013, Method of testing cement. Chemical analysis of cement.
Javellana, M.; Jawed, I. (1982) Extraction of free lime in Portland cement and clinker by ethylene glycol. Cem. Concr. Res. 12, 399–403. https://doi.org/10.1016/0008-8846(82)90088-6
Galan, I.; Hanein, T., Elhoweris, A.; Bannerman, M.N.; Glasser, F.P. (2017) Phase Compatibility in the System CaO-SiO2-Al2O3-SO3-Fe2O3 and the Effect of Partial Pressure on the Phase Stability. Industrial & Engineering Research. 56, 2341–2349. https://doi.org/10.1021/acs.iecr.6b03470
Marroccoli, M.; Pace M.L.; Telesca, A.; Valenti, G.L. (2010) Synthesis of calcium sulfoaluminate cements from Al2O3-rich by-products from aluminum manufacture, in: Proceedings of the 2ed International Congress on Sustainable Construction Materials and Technologies, Ancona, Italy, 2010.
Jen, G.; Skalamprinos, S.; Whittaker, M.; Galan, I.; Ibabai, M.S.; Glasser, F.P. (2017) The impact of intrinsic anhydrite in an experimental calcium sulfoaluminate cement from a novel, carbon-minimized production process. Mater. Struct. 50, 144. https://doi.org/10.1617/s11527-017-1012-z
Brotherton, P.D.; Epstein, J.M.; Pryce, M.W.; White, A.H. (1974) Crystal Structure of Calcium Sulphosilicate Ca5(SiO4)2SO4. Aust. J. Chem. 27, 657–660. https://doi.org/10.1071/CH9740657
Shermanl, N.; Beretkal, J.; Santoro, L.; Valenti, G.L. (1995) Long-term behaviour of hydraulic binders based on calciumsulfoaluminate and calcium sulfosilicate. Cem. Concr. Res. 25 [1], 113–126. https://doi.org/10.1016/0008-8846(94)00119-J
Idrissi, M; Diouri, A.; Damidot, D.; Greneche, J.M.; Talbi, M.A.; Taibi, M. (2010) Characterisation of iron inclusion during the formation of calcium sulfoaluminate phase. Cem. Concr. Res. 40, 1314–1319. https://doi.org/10.1016/j.cemconres.2010.02.009
Idrissi, M; Diouri, A.; Talbi, M.A.; Sassi, O; Taibi, M.; Damidot, D. (2012) Hydration behavior of iron doped calcium sulfoaluminate phase at room temperature. MATEC Web of Conferences 2.
Taylor, H.F.W.; Famy, C.; Scrivener, K.L. (2016) Delayed ettringite formation. Cem. Concr. Res. 31, 683–693. https://doi.org/10.1016/S0008-8846(01)00466-5
Gallardo H., M.; Almanza R., J.M.; Cortés H., D.A.; Escobedo B., J.C. (2016) Mechanical and chemical behavior of calcium sulfoaluminate cements obtained from industrial waste. Revista ALCONPAT 6, 15–27. https://doi.org/10.21041/ra.v6i1.112
Kaufmann, J.; Winnefeld, F.; Lothenbach, B. (2016) Stability of ettringite in CSA cement at elevated temperatures. Adv. Cem. Res. 28, 251–261. https://doi.org/10.1680/jadcr.15.00029
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.