Preparation and characterization of protective self-cleaning TiO2/kaolin composite coating
DOI:
https://doi.org/10.3989/mc.2018.08517Keywords:
Composite, Durability, Characterization, Microstructure, Particles size distribution, Scanning Electron Microscopy (SEM), X-ray diffraction (XRD)Abstract
The application of self-cleaning coatings presents one of the most effective ways to protect the surfaces of the building materials. The effect of TiO2/kaolin based coatings applied to three types of substrates: non-porous, porous and highly porous, was investigated. Mechanical activation was applied for the impregnation of the active TiO2 component (in content of 3 and 10 wt. %) into the kaolin support. Surface properties (roughness, hydrophilicity and micro-hardness) and functional properties (photocatalytic activity and self-cleaning efficiency) were studied in order to define the optimal formulation of the applied coatings. The effect of the photocatalytic behavior of the coated substrates in terms of self-cleaning ability was assessed by the photodegradation of Rhodamine B, performed before and after durability tests. The results obtained in this paper showed that photocatalytic activity of the TiO2/kaolin composite coating generally depends on the procedure of TiO2 impregnation into the kaolin clay and the loaded TiO2 content.
Downloads
References
Chen, J.; Poon, C.S. (2009) Photocatalytic construction and building materials: from fundamentals to applications. Build. Environ. 44 (9), 1899-1906. https://doi.org/10.1016/j.buildenv.2009.01.002
Ducman, V.; Petrovi_, V.; _kapin, D.S. (2013) Photo-catalytic efficiency of laboratory made and commercially available ceramic building products. Ceram. Int. 39 (3), 2981-2987. https://doi.org/10.1016/j.ceramint.2012.09.075
Goffredo, G.B.; Munafò, P. (2015) Preservation of historical stone surfaces by TiO2 nanocoatings. Coatings. 5 (2), 222-231. https://doi.org/10.3390/coatings5020222
Sciancalepore, C. F.; Bondioli, F. (2015) Durability of SiO2-TiO2 photocatalytic coatings on Ceramic Tiles. Int. J. Appl. Ceram. Technol. 12 (3), 679-684. https://doi.org/10.1111/ijac.12240
Sciancalepore, C.; Manfredini, T.; Bondioli, F. (2014) Antibacterial and self-cleaning coatings for silicate seramics: A review. Advances in Science and Technology, 92, 90-99. https://doi.org/10.4028/www.scientific.net/AST.92.90
Pal, S.; Contaldi, V.; Liccilulli, A.; Marzo, F. (2016) Self-cleaning mineral paint for application in architectural heritage. Coatings. 6 (4), 48. https://doi.org/10.3390/coatings6040048
Taurino, R.; Barbieri, L.; Bondioli, F. (2016) Surface properties of new green building material after TiO2-SiO2 coatings deposition. Ceram. Int. 42 (4), 4866-4874. https://doi.org/10.1016/j.ceramint.2015.12.002
Ranogajec, J.; Radeka, M.; Ba_kali_, Z.; _kapin, A.; Zori_, D. (2010) Photocatalytic and superhydrophilic phenomena of TiO2 coated clay roofing tiles. Chem. Ind. Chem. Eng. Q. 16 (2), 117-126. https://doi.org/10.2298/CICEQ091214018R
Zhang, Y.H.; Gan, H.; Zhang, G. (2011) A novel mixed-phase TiO2/kaolinite composites and their photocatalytic activity for degradation of organic contaminants. Chem. Eng. J. 172 (2-3), 936-943. https://doi.org/10.1016/j.cej.2011.07.005
Warheit, D.B.; Hoke, R.A.; Finlay, C.; Donner, E.M.; Reed, K.L.; Sayes, C.M. (2007) Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicol Lett, 2007. 171(3), 99-110. https://doi.org/10.1016/j.toxlet.2007.04.008 PMid:17566673
Yu, Y. (2004) Preparation of nanocristalline TiO2-coated coal fly ash and effect of iron oxides in coal fly ash on photocatalytic activity. Powder Technol. 146 (1-2), 154-159. https://doi.org/10.1016/j.powtec.2004.06.006
Yahiro, H.; Miyamoto, T.; Watanabe, N.; Yamaura, H. (2007) Photocatalytic partial oxidation of a-metylstyrene over TiO2 suported on zeolites, Catal. Today, 120 (2), 158-162. https://doi.org/10.1016/j.cattod.2006.07.039
Puzenat, E.; Puerre, P. (2003) Studying TiO2 coating on silica-covered glass by O2 photosorption measurements and FTIR-ATR spectrometry: Correlation with the self-cleaning efficacy, J. Photochem. Photobiol. A: Chemistry, 160 (1-2), 127-133. https://doi.org/10.1016/S1010-6030(03)00231-4
Rebilasová. S.; Mamulová. K.K.; Mat_jka. V.; Tokarsky_. J.; Kukutschová. J.; Neuwirthová. L.; _APKOVÁ. P. (2010) Preparation, characterization and comparison of composites: kaolinite/TiO2 and quartz/TiO2.NANOCON'10 International conference, Czech Republic.
Vulic,T.; Hadnadjev-Kostic, M.; Rudic, O.; Radeka, M.; Marinkovic- Neducin, R.; Ranogajec, J. (2013) Improvement of cement-based mortars by application of photocatalytic active Ti-Zn-Al nanocomposites, Cem. Concr. Compos. 36, 121-127. https://doi.org/10.1016/j.cemconcomp.2012.07.005
Keller, N.; Rebmann, G.; Barraud, E.; Zahraa, O.; Keller, V. (2005) Macroscopic carbon nanofibers for use as photocatalydt support, Catal. Today 101, 323-329. https://doi.org/10.1016/j.cattod.2005.03.021
Portela, R.; Sánchez, B.; Coronado, J.M.; Candal, R.; Suárez, S. (2007) Selection of TiO2-support: UV-transparent alternatives and long-term use limitations for H2S removal, Catal. Today 129 (1-20), 223-230. https://doi.org/10.1016/j.cattod.2007.08.005
Rudic, O.; Rajnovic, D.; Cjepa, D.; Vucetic, S.; Ranogajec, J. (2015) Investigation of the durability of porous mineral substrates with newly designed TiO2-LDH coating. Ceram. Int. 41 (8), 9779-9792. https://doi.org/10.1016/j.ceramint.2015.04.050
Rudic, O.; Ranogajec, J.; Vulic, T.; Vucetic, S.; Cjepa, D.; Lazar, D. (2014) Photo-induced properties of TiO2/ZnAl layered double hydroxide coating onto porous mineral substrates. Ceram. Int. 40 (7), Part A 9445-9455. https://doi.org/10.1016/j.ceramint.2014.02.017
Chong, M.N.; Vimonses, V.; Lei, S.; Jin, B.; Chow, C.; Saint, C. (2009) Synthesis and characterisation of novel titania impregnated kaolinite nano-photocatalyst. Microporous Mesoporous Mater. 117 (1-2), 233-242. https://doi.org/10.1016/j.micromeso.2008.06.039
Yuan, L.; Huang, D.; Guo, D.; Yang, Q.; Yu, J. (2011) TiO2/montmorillonite nanocomposite for removal of organic pollutant. Appl. Clay Sci. 53 (2), 272-278. https://doi.org/10.1016/j.clay.2011.03.013
Szczepanik, B. (2017) Photocatalytic degradation of organic contaminants over clay-TiO2 nanocomposites: A review. Appl. Clay Sci. 141, 227-239. https://doi.org/10.1016/j.clay.2017.02.029
Fujishima, A.; Hashimoto, K.; Watanabe, T. (1999) TiO2 photocatalysis fundamentals and applications, Tokyo Bkc (1999).
Ma, Y.; Qiu, J.B.; Cao, Y.A.; Guan, Z.S.; Yao, J.N. (2001) Photocatalytic activity of TiO2 films grown on different substrates. Chemosphere - Oxford 44 (5), 1087-1092.
Yu, J.; Zhao, X. (2000) Effect of substrates on the photocatalytic activity of nanometer TiO2 thin films. Mater. Res. Bull. 35 (8), 1293-1301. https://doi.org/10.1016/S0025-5408(00)00327-5
Fidanchevska, E.; Jovanov, V.; Angjusheva, B.; Srebrenkoska, V. (2014) Composites based on fly ash and clay, The 27-th Conference of the Israel Nuclear Societies, February, 11-13, Dead Sea Israel
SRPS U.M8.300:1985, Determination of the Capillary Water Absorption of Building Material and Coatings, 1985.
Jovanov, V.; Rudic, O.; Ranogajec, J.; Fidanchevska, E. (2017) Synthesis of nanocompositecoating based on TiO2/ZnAl layer double hydroxides, Materiales de Construcción 67 (325), 112-120. https://doi.org/10.3989/mc.2017.07215
UNI 11259:2008. Determination of the photocatalytic activity of hydraulic binders - Dodammina test method. Ente nazionale italiano di unificazione; 2008
Cassar, L.; Beeldens, A.; Pimpinelli, N.; Guerrini, G.L. (2007) Photocatalysis of cementous materials. Proceedings pro055: InternationalRILEM symposium on photocatalysis, environment and construction materials - TDP 2007, Edited by: Biglioni, P., Cassa, L., RILEM Publications SARI. 131-45.
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.